当前位置: 首页 > news >正文

【数据结构】带你深入理解栈

一. 栈的基本概念💫

栈是一种特殊的线性表。其只允许在固定的一端进行插入和删除元素的操作,进行数据的插入和删除的一端称作栈顶,另外一端称作栈底栈不支持随机访问,栈的数据元素遵循后进先出的原则,即LIFO(Late In First Out)。

也许有人曾经听说过压栈入栈的术语,以下是它们的定义:

压栈:栈的插入操作叫做进栈/压栈/入栈,插入数据是在栈顶
出栈:栈的删除操作叫做出栈/弹栈,删除数据也是在栈顶

我们结合动图来理解栈的后进先出:

二. 栈实现方法的分析与选择👉

2.1 引入

我们可以使用顺序存储结构或者链式存储结构来实现栈。换句话来说,我们可以使用之前学习过的顺序表或者链表来实现栈,它们各自有自己的优缺点,下面我们就来分析分析。

2.2 用顺序表来实现

以下是动态顺序表实现栈的结构体声明和图示:

typedef struct StackList
{STDataType* a; //指向动态开辟的空间int top; //栈顶所在下标,相当于元素个数int capacity;//顺序表容量
}ST;

优点:由于栈的插入和删除数据符合后进先出的原则,我们把顺序表末端当作栈顶,则插入数据和删除数据就是尾插尾删。而前面我们知道顺序表的尾插和尾删效率非常高,时间复杂度为O(1)。

缺点:存在容量限制,当容量不足是需要扩容,扩容需要成本。

2.3 用链表来实现

2.3.1 单链表实现(尾为栈顶)

typedef struct StackNode
{STDataType x;//数据域StackNode* nest;//指针域,指向下一结点
}ST;
struct Stack
{ST* phead;//指向第一个结点ST* tail;//指向尾结点
}

假如我们使用链表尾当作栈顶,则对应的插入删除就是尾插尾删。我们知道单链表的尾插和尾删要先找到链表尾,时间复杂度是O(N)。可能有人会想,那我定义一个尾指针来记录链表尾部,想法很好,但是这样虽然解决了尾插效率低的问题,但是尾删除了要找到最后一个结点,还要找到其前面的结点,由于链表单向,最终还是要遍历链表,没有什么意义。


2.3.2 单链表实现(头为栈顶)

我们知道,和顺序表相反,单链表头插和头删效率较高,时间复杂度为O(1)。我们就可以将链表头当作栈顶,这样插入就相当于头插,删除就相当于头删,如下:

2.3.3 双向链表实现

如果一定要使用链表以及把链表尾当作栈顶,为了解决删除需要找到尾结点的前驱结点时间效率低的问题,我们可以用双向链表来实现栈。双向链表除了后继指针还增加了前驱指针来指向上一个结点,利用这个结构可以直接得到上一个结点,无需再遍历链表,时间复杂度为O(1)

typedef struct StackNode
{STDataType x;//数据域StackNode* nest;//后继指针域,指向下一结点StackNode* prev;//前驱指针域,指向上一结点
}ST;
struct Stack
{ST* phead;//指向第一个结点ST* tail;//指向尾结点
}

2.3.4 总结

如果没有要求栈顶的位置,则我们还是使用单链表来实现,将头作为栈顶。这是因为双向链表比单链表的结点多占用了一个前驱指针的空间,虽然现代计算机空间已然构不成太大问题,但是能省则省,大伙们懂的😏。
如果题目要求栈顶在链表尾的话,那还是老老实实用双向链表实现吧。
使用链表的缺点就是每次插入都要malloc新结点,会消耗一定的时间成本。

2.4 选择

我们推荐采用顺序表来实现对栈的操作,原因如下:
1. 栈的特性完美避开了顺序表尾插尾删效率过低的问题,虽然需要扩容,但是链表创建结点也同样需要成本,而顺序表扩容频率不像链表一样如此频繁
2. 我们知道CPU与主存速度上存在巨大差距,为了提高效率,CPU和主存之间还存在着cache高速缓存CPU访问cache的速度是快于主存的。每次CPU取数据时会访问cache看看存不存在所需的数据,如果不存在才会访问主存,然后将数据所在的内存块加载到cache中。由于顺序表空间是连续的,根据cache的空间局部性原理,采用顺序表cache的命中率会高于链表,效率高。

三. 接口的实现✈

3.1 栈的声明

本文我们采用动态顺序表来实现栈,结构体的声明如下:
typedef int STDataType;
typedef struct StackList
{STDataType* a;//指向动态开辟的空间int top; //栈顶所在下标,相当于元素个数int capacity;//栈的容量
}ST;

和前面链表顺序表一样,我们不直接指定数据的类型,而是将类型重定义为STDataType,这样做有利于提高代码的可维护性

3.2 初始化和销毁

和其他数据结构一样,当我们使用栈结构之前需要对其进行初始化,当我们不再使用它是要对它进行销毁,具体代码如下:

//初始化栈
void StackInit(ST* ps)  //需要改变实参,传指针
{assert(ps);//确保传入的指针不为空ps->a = (STDataType*)malloc(4 * sizeof(STDataType));//起初先分配四个字节空间ps->capacity = 4;ps->top = 0;
}//销毁栈
void StackDestroy(ST* ps)
{assert(ps);free(ps->a);//将栈空间释放掉//将栈结构中的信息清空ps->capacity = 0;ps->top = 0;ps->a = NULL;
}

3.3 入栈

由于栈只允许在固定的一端插入,我们又将末端当作栈顶,因此入栈就是尾插。而顺序表的尾插我们已经很清楚了,往栈顶所在下标放入数据,然后栈顶下标加1即可。效果和代码如下:

//入栈
void StackPush(ST* ps, STDataType x)
{assert(ps);if (ps->top == ps->capacity) //元素个数等于容量,栈满了,先扩容{STDataType* temp = (STDataType*)realloc(ps->a, 2 * ps->capacity*sizeof(STDataType));if (temp == NULL)//失败则退出程序{printf("扩容失败\n");exit(-1);}else{ps->a = temp;ps->capacity *= 2;temp = NULL;}}(ps->a)[ps->top] = x;//入栈(ps->top)++;//更新栈顶位置
}

3.4 出栈

和入栈一样,出栈也只在固定的一端进行。入栈是尾插,则出栈就是尾删。而我们用顺序表来实现栈,因此尾删只需要将栈顶退后一位即可。

这里有人可能会将栈顶的元素置0然后再将栈顶位置后退一位。实际上这种方法并不可取,有以下两种原因:
1. 如果栈顶的元素本身就是0,那我们的行为就失去了意义。
2. 栈的元素类型不一定是整形,如果是浮点型或者结构体,我们赋值为0显然是不妥的。
//出栈
void StackPop(ST* ps)
{assert(ps);//确保传入指针不为空assert(ps->top);//确保栈存在元素(ps->top)--;//更新栈顶
}

3.5 求栈顶元素

很简单,我们可以直接根据栈顶所在的下标得到栈顶元素,如下:

//求栈顶元素
STDataType StackTop(ST* ps)
{assert(ps);assert(ps->top);//确保栈中存在元素return ps->a[ps->top - 1];//栈顶元素所在下标即为top-1
}

3.6 判空

在我们设计的栈结构中,top实际上就等价于元素个数,通过判断top是否为0就可以知道栈是否为空。我们使用了C语言stdbool.h头文件中的bool类型,其只能用来存放true(1)false(0)两个值,分别代表真和假。代码如下:

//判空
bool StackEmpty(ST* ps)
{assert(ps);return ps->top;//top为0则返回false,不为零返回true
}

3.7 求栈的元素个数

根据我们构造的栈结构体,栈顶top的值就是栈的元素个数,直接返回即可:

//求栈的元素个数
int StackSize(ST* ps)
{assert(ps);return ps->top;
}

3.8 思考

会不会有人会有以下思考:
1. 求栈顶元素,判空,求元素个数都是用一行直接返回,这些接口会不会有些许多余,直接访问结构体相应成员不就好了?
2. 为什么没有实现查找,打印,修改等接口?

下面我们来分析一下:

  • 我们要知道,数据结构的实现方式多种多样,在本文我们将栈元素个数作为栈顶的下标,那可不可以将最后一个元素的下标作为栈顶下标呢?实际上完全可以。那么就会出现一个问题,如果我们使用别人已经封装好的栈,我们要怎么知道栈顶元素下标是top还是top-1呢?我们要怎么知道是top=0为空还是top=-1为空呢?我们要怎么知道元素个数是top还是top+1呢?我们完全不知道,只有设计者才知道,因此设计者往往会将这些功能再封装成函数,供我们直接调用

  • 这是因为栈是一种限制型数据结构,其不支持随机访问,只允许在固定的一端(栈顶)进行插入和删除操作,不允许在其他的位置进行任何操作。因此,栈不存在查找,打印,修改等对除栈顶之外的位置进行操作的接口,否则会破坏栈的特性。为了遵循栈的特性,我们就不实现这些接口。

四. 完整代码及效果展示🌠

按照以往惯例,我们采用多文件编写的形式,将上述接口的定义实现放在Stack.c文件中,然后将接口的声明和结构体的定义放于Stack.h头文件中,以达到封装的效果。这样我们如果需要使用栈,就只需要在文件中包含对应的头文件Stack.h就可以使用我们上面定义的各种接口。以下为本文实现的完整代码以及效果展示:

//Stack.h文件,用于声明接口函数,定义结构体
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>typedef int STDataType;
typedef struct StackList
{STDataType* a;//指向动态开辟的空间int top; //栈顶所在下标,相当于元素个数int capacity;//栈的容量
}ST;//初始化
void StackInit(ST* ps);
//销毁
void StackDestroy(ST* ps);
//出栈
void StackPop(ST* ps);
//入栈
void StackPush(ST* ps, STDataType x);
//求栈顶元素
STDataType StackTop(ST* ps);
//求栈元素个数
int StackSize(ST* ps);
//判空
bool StackEmpty(ST* ps);
//Stack.c文件,用于定义接口函数
#include"Stack.h"//初始化栈
void StackInit(ST* ps)  //需要改变实参,传指针
{assert(ps);//确保传入的指针不为空ps->a = (STDataType*)malloc(4 * sizeof(STDataType));//起初先分配四个字节空间ps->capacity = 4;ps->top = 0;
}//入栈
void StackPush(ST* ps, STDataType x)
{assert(ps);if (ps->top == ps->capacity) //元素个数等于容量,栈满了,先扩容{STDataType* temp = (STDataType*)realloc(ps->a, 2 * ps->capacity * sizeof(STDataType));if (temp == NULL)//失败则退出程序{printf("扩容失败\n");exit(-1);}else{ps->a = temp;ps->capacity *= 2;temp = NULL;}}(ps->a)[ps->top] = x;//入栈(ps->top)++;//更新栈顶位置
}//出栈
void StackPop(ST* ps)
{assert(ps);//确保传入指针不为空assert(ps->top);//确保栈存在元素(ps->top)--;//更新栈顶
}//求栈顶元素
STDataType StackTop(ST* ps)
{assert(ps);assert(ps->top);//确保栈中存在元素return ps->a[ps->top - 1];//栈顶元素所在下标即为top-1
}//求栈的元素个数
int StackSize(ST* ps)
{assert(ps);return ps->top;
}//判空
bool StackEmpty(ST* ps)
{assert(ps);return ps->top;//top为0则返回false,不为零返回true
}//销毁栈
void StackDestroy(ST* ps)
{assert(ps);free(ps->a);//将栈空间释放掉//将栈结构中的信息清空ps->capacity = 0;ps->top = 0;ps->a = NULL;
}

最后, 我们在tesst.c文件调用栈各个接口进行测试,如下:

//test.c文件,用于测试
#include"Stack.h"void test01()
{ST s1;//初始化StackInit(&s1);//求元素个数printf("入栈前栈的元素个数为:%d\n", StackSize(&s1));//入栈StackPush(&s1,1);StackPush(&s1, 2);StackPush(&s1, 3);StackPush(&s1, 4);printf("入栈后栈的元素个数为:%d\n", StackSize(&s1));//由于无法遍历打印,我们就交替使用 求栈顶元素-出栈 来显示栈中元素printf("栈中元素:> ");while (StackEmpty(&s1))//栈不为空则继续{//求栈顶元素printf("%d ", StackTop(&s1));//出栈StackPop(&s1);}//全部出栈printf("\n全部出栈后栈的元素个数为:%d\n", StackSize(&s1));//销毁StackDestroy(&s1);
}int main()
{test01();return 0;
}

以下是测试的最终效果:


以上,就是本期的全部内容啦🌸

制作不易,能否点个赞再走呢🙏

相关文章:

【数据结构】带你深入理解栈

一. 栈的基本概念&#x1f4ab;栈是一种特殊的线性表。其只允许在固定的一端进行插入和删除元素的操作&#xff0c;进行数据的插入和删除的一端称作栈顶&#xff0c;另外一端称作栈底。栈不支持随机访问&#xff0c;栈的数据元素遵循后进先出的原则&#xff0c;即LIFO&#xff…...

认识CSS之如何提高写前端代码的效率

&#x1f31f;所属专栏&#xff1a;前端只因变凤凰之路&#x1f414;作者简介&#xff1a;rchjr——五带信管菜只因一枚&#x1f62e;前言&#xff1a;该系列将持续更新前端的相关学习笔记&#xff0c;欢迎和我一样的小白订阅&#xff0c;一起学习共同进步~&#x1f449;文章简…...

Vue中watch和computed

首先这里进行声明&#xff0c;这个讲的是vue2的内容&#xff0c;在vue3发生了什么变动与此无关 这里是官网&#xff1a; https://v2.cn.vuejs.org/v2/guide/installation.html computed > 计算属性 watch > 侦听器&#xff08;也叫监视器&#xff09; 其区别如下&…...

华为鲲鹏+银河麒麟v10 安装 docker-ce

设备&#xff1a;硬件&#xff1a;仅有ARM处理器&#xff0c;无GPU和NPU&#xff0c;操作系统麒麟银河V10&#xff0c;Kunpeng-920 #######参考原链接######### 华为鲲鹏银河麒麟v10 安装 docker-ce 踩坑 - akiyaの博客 在 arm64(aarch64) 架构服务器上基于国产化操作系统安…...

Lambda,Stream,响应式编程从入门到放弃

Lambda表达式 Java8新引入的语法糖 Lambda表达式*&#xff08;关于lambda表达式是否属于语法糖存在很多争议&#xff0c;有人说他并不是语法糖&#xff0c;这里我们不纠结于字面表述&#xff09;*。Lambda表达式是一种用于取代匿名类&#xff0c;把函数行为表述为函数式编程风…...

C语言枚举使用技巧

什么是C语言枚举 C语言枚举是一种用户自定义数据类型&#xff0c;它允许程序员定义一个变量&#xff0c;并将其限制为一组预定义的常量。这些常量被称为“枚举值”&#xff0c;并且可以通过名称进行引用。 在C语言中&#xff0c;枚举值是整数类型&#xff0c;它们的值默认从0…...

保姆级使用PyTorch训练与评估自己的EfficientNetV2网络教程

文章目录前言0. 环境搭建&快速开始1. 数据集制作1.1 标签文件制作1.2 数据集划分1.3 数据集信息文件制作2. 修改参数文件3. 训练4. 评估5. 其他教程前言 项目地址&#xff1a;https://github.com/Fafa-DL/Awesome-Backbones 操作教程&#xff1a;https://www.bilibili.co…...

【9】基础语法篇 - VL9 使用子模块实现三输入数的大小比较

VL9 使用子模块实现三输入数的大小比较 【报错】官方平台得背锅 官方平台是真的会搞事情,总是出一些平台上的莫名其妙的错误。 当然如果官方平台是故意考察我们的细心程度,那就当我没有说!! 在这个程序里,仿真时一直在报错 错误:无法在“test”中绑定wire/reg/memory“t…...

成功的项目管理策略:减少成本,提高质量

项目管理是一项具有挑战性的任务&#xff0c;项目团队需要合理的规划和策略&#xff0c;以确保项目的成功和达成预期。为了实现项目的成功&#xff0c;项目经理必须采用正确的策略&#xff0c;才能以最大限度地减少成本并提高项目质量。本文将探讨成功的项目管理策略&#xff0…...

centos 7下JDK8安装

下载安装包https://www.oracle.com/java/technologies/downloads/#java8-linux上传路径 /usr/local&#xff08;替换为自己需要安装的路径&#xff09;解压tar -zxvf jdk-8u131-linux-x64.tar.gz配置环境变量[rootlocalhost java]# vi /etc/profile添加如下配置在配置文件最后&…...

datatables.js中文项目使用案例

官方下载地址https://datatables.net/download/中文官网&#xff1a;http://datatables.club/资源引用<link href"~/datatables/datatables.min.css" rel"stylesheet" /> <script src"~/jquery.min.js" type"text/javascript"…...

Hadoop小结

Hadoop是什么Hadoop是一 个由Apache基金 会所开发的分布式系统基础架构。主要解决,海量数据的存储和海量数据的分析计算问题。广义上来说&#xff0c;Hadoop通 常是指一个更广泛的概念一Hadoop 生态圈。Hadoop优势Hadoop组成HDFS架构Hadoop Distributed File System&#xff0c…...

经典卷积模型回顾14—vgg16实现图像分类(tensorflow)

VGG16是由牛津大学计算机视觉小组&#xff08;Visual Geometry Group&#xff09;开发的深度卷积神经网络模型。其结构由16层组成&#xff0c;其中13层是卷积层&#xff0c;3层是全连接层。 VGG16被广泛应用于各种计算机视觉任务&#xff0c;如图像分类、目标检测和人脸识别等。…...

#Vue2篇:keep-alive的属性和方法

定义 keep-alive 组件是 Vue.js 内置的一个高阶组件&#xff0c;用于缓存其子组件&#xff0c;以提高组件的性能和响应速度。 除了基本用法之外&#xff0c;它还提供了一些属性和方法&#xff0c;以便更好地控制缓存的组件。 属性 include属性用于指定哪些组件应该被缓存&a…...

webpack指南(项目篇)——webpack在项目中的运用

系列文章目录 webpack指南&#xff08;基础篇&#xff09;——手把手教你配置webpack webpack指南&#xff08;优化篇&#xff09;——webpack项目优化 文章目录系列文章目录前言一、配置拆分二、修改启动命令三、定义环境变量四、配置路径别名总结前言 前面我们对webpack的基…...

unicode字符集与utf-8编码的区别,unicode转中文工具、中文转unicode工具(汉字)

在cw上报的报警信息中&#xff0c;有一个name字段的值是\u4eba\u4f53 不知道是啥&#xff0c;查了一下&#xff0c;是unicode编码&#xff0c;用下面工具转换成汉字就是“人体” 参考文章&#xff1a;https://tool.chinaz.com/tools/unicode.aspx 那么我很好奇&#xff0c;uni…...

3D数学系列之——再谈特卡洛积分和重要性采样

目录一、前篇文章回顾二、积分的黎曼和形式三、积分的概率形式&#xff08;蒙特卡洛积分&#xff09;四、误差五、蒙特卡洛积分计算与收敛速度六、重要性采样七、重要性采样方法和过程八、重要性采样的优缺点一、前篇文章回顾 在前一篇文章3D数学系列之——从“蒙的挺准”到“蒙…...

Python错误 TypeError: ‘NoneType‘ object is not subscriptable解决方案汇总

目录前言一、引发错误来源二、解决方案2-1、解决方案一&#xff08;检查变量&#xff09;2-2、解决方案二&#xff08;使用 [] 而不是 None&#xff09;2-3、解决方案三&#xff08;设置默认值&#xff09;2-4、解决方案四&#xff08;使用异常处理&#xff09;2-5、解决方案五…...

VMware空间不足又无法删除快照的解决办法

如果因为快照删除半路取消或者失败&#xff0c;快照管理器就不再显示这个快照&#xff0c;但是其占用的空间还在&#xff0c;最终导致硬盘不足。 可以百度到解决方案&#xff0c;就是在快照管理器&#xff0c;先新建一个&#xff0c;再点删除&#xff0c;等待删除完成就可以将…...

类和对象(一)

类和对象&#xff08;一&#xff09; C并不是纯面向对象语言 C是面向过程和面向对象语言的&#xff01; 面向过程和面向对象初步认识&#xff1a; C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。 C是基…...

Java 不同路径

不同路径中等一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。问总共有多少条不同的路径&#xff1f…...

【SAP PO】X-DOC:SAP PO 接口配置 REST 服务对接填坑记

X-DOC&#xff1a;SAP PO 接口配置 REST 服务对接填坑记1、背景2、PO SLD配置3、PO https证书导入1、背景 &#xff08;1&#xff09;需求背景&#xff1a; SAP中BOM频繁变更&#xff0c;技术人员在对BOM进行变更后&#xff0c;希望及时通知到相关使用人员 &#xff08;2&…...

最新研究!美国爱荷华州立大学利用量子计算模拟原子核

爱荷华州立大学物理学和天文学教授James Vary&#xff08;图片来源&#xff1a;网络&#xff09;美国爱荷华州立大学物理学和天文学教授James Vary和来自爱荷华州立大学、马萨诸塞州塔夫茨大学&#xff0c;以及美国能源部加利福尼亚州劳伦斯伯克利国家实验室的研究人员&#xf…...

零入门kubernetes网络实战-22->基于tun设备实现在用户空间可以ping通外部节点(golang版本)

《零入门kubernetes网络实战》视频专栏地址 https://www.ixigua.com/7193641905282875942 本篇文章视频地址(稍后上传) 本篇文章主要是想做一个测试&#xff1a; 实现的目的是 希望在宿主机-1上&#xff0c;在用户空间里使用ping命令发起ping请求&#xff0c;产生的icmp类型的…...

web安全——Mybatis防止SQL注入 ssrf漏洞利用 DNS污染同源策略

目录 0x01 Mybatis防止SQL注入 0x02 sqlmap中报错注入判断 0x03 ssrf漏洞利用 0x04 SSRF重绑定 0x05 DNS污染...

smp_init过程解析

当你看到这样的log&#xff0c;会不会很慌张&#xff1f;竟然由CPU没有启动成功&#xff0c;除了什么故障&#xff1f;本文将结合我遇到的一个问题&#xff0c;将启动过程中bringup secondary cpu的过程分析一下。smp_init代码如下&#xff1a;602 void __init smp_init(void) …...

判断推理之逻辑判断

考点一翻译推理&#xff08;一&#xff09;题目特征题干或选项中出现多组“逻辑关联词”&#xff0c;如&#xff1a;“如果……那么……”、“只要……就……”、“只有……才……”、“所有”、“有些”、“……且……”、“ ……或……”等典型逻辑关联词。&#xff08;二&am…...

2023金三银四常见Handler面试总结,附带答案

以下的Handler的面试题都是在面试过程中总结出来比较常见的面试题&#xff0c;现在分享给大家&#xff0c;希望可以帮助你们&#xff01;1.Handler的实现原理从四个方面看Handler、Message、MessageQueue 和 Looper Handler:负责消息的发送和处理 Message:消息对象&#xff0c;…...

为什么机器人操作系统ROS1、ROS2这么难学

AI回复&#xff1a;ROS1、ROS2是机器人操作系统&#xff0c;涉及到很多复杂的概念和技术&#xff0c;需要有一定的编程和机器人知识基础才能学习。此外&#xff0c;ROS1和ROS2的架构和设计也有很大的不同&#xff0c;需要花费一定的时间和精力去学习和适应。但是&#xff0c;一…...

day01

授课老师 &#xff1a;陶国荣 联系方式 &#xff1a; taogrtedu.cn 授课阶段 &#xff1a; Web前端基础 授课内容 &#xff1a; HTML CSS JavaScript 文章目录一、讲师和课程介绍二、Web前端介绍1. 什么是网页2. 网页的组成3. 网页的优势4. 开发前的准备三、 HTML语法介绍…...

第四十章 linux-并发解决方法五(顺序锁seqlock)

第四十章 linux-并发解决方法四&#xff08;顺序锁seqlock&#xff09; 文章目录第四十章 linux-并发解决方法四&#xff08;顺序锁seqlock&#xff09;顺序锁的设计思想是&#xff0c;对某一共享数据读取时不加锁&#xff0c;写的时候加锁。为了保证读取的过程中不会因为写入名…...

【SPSS】交叉设计方差分析和协方差分析详细操作教程(附案例实战)

🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 方差分析概述 交叉设计方差分析...

playwright--核心概念和Selector定位

文章目录前言一、浏览器二、浏览器上下文三、页面和框架四、Selectors1、data-test-id selector2、CSS and XPath selector3、text 文本selector4、id定位selector5、Selector 组合定位五、内置Selector前言 Playwright提供了一组API可自动化操作Chromium&#xff0c;Firefox和…...

响应式操作实战案例

Project Reactor 框架 在Spring Boot 项目 Maven 中添加依赖管理。 <dependency><groupId>io.projectreactor</groupId><artifactId>reactor-core</artifactId> </dependency><dependency><groupId>io.projectreactor</g…...

NetApp AFF A900:针对任务关键型应用程序的解决方案

NetApp AFF A900&#xff1a;适用于数据中心的解决方案 AFF A 系列中的 AFF A900 高端 NVMe 闪存存储功能强大、安全可靠、具有故障恢复能力&#xff0c;提供您为任务关键型企业级应用程序提供动力并保持数据始终可用且安全所需的一切。 AFF A900&#xff1a;针对任务关键型应…...

使用Houdini输出四面体网格并输出tetgen格式

我们的目标是从houdini输出生成的四面体&#xff0c;希望是tetgen格式的。 众所周知&#xff0c;houdini是不能直接输出四面体的。 有三方案去解决&#xff1a; 输出点云ply文件&#xff0c;然后利用tetgen生成网格。输出Hounidi内置的.geo格式文件&#xff0c;然后写个脚本…...

组合预测 | MATLAB实现EMD-KPCA-LSTM、EMD-LSTM、LSTM多输入单输出回归预测对比

组合预测 | MATLAB实现EMD-KPCA-LSTM、EMD-LSTM、LSTM多输入单输出回归预测对比 目录 组合预测 | MATLAB实现EMD-KPCA-LSTM、EMD-LSTM、LSTM多输入单输出回归预测对比预测效果基本介绍模型描述程序设计参考资料预测效果 基本介绍 MATLAB实现EMD-KP...

【C语言】操作符详解总结(万字)

操作符详解1. 操作符分类2. 算术操作符3. 移位操作符3.1 整数的二进制是怎么形成的3.2 左移操作符3.3 右移操作符4. 位操作符5. 赋值操作符6. 单目操作符6.1 单目操作符介绍6.2 sizeof 和 数组7. 关系操作符8. 逻辑操作符9. 条件操作符9.1 练习19.2 练习210. 逗号表达式11. 下标…...

mac系统手册(帮助/说明)

文章目录1. mac自带的帮助文档2. Mac使用技巧&#xff08;提示&#xff09;2.1 聚焦搜索2.2 截图&#xff08;录制屏幕&#xff09;2.3 调出右键菜单2.4 快速查看2.5 翻译2.5.1 词典解释2.5.2 翻译&#xff08;字、词和句&#xff09;3. macOS使用手册3.1 在聚焦中进行计算和转…...

VLC播放器Demo(录像,截图等功能),Android播放器Demo可二次开发。

VLC播放器Demo&#xff08;录像&#xff0c;截图等功能&#xff09;&#xff0c;可二次开发。 GitHub地址:https://github.com/ILoveLin/VlcRecordPlayer GitHub地址:https://github.com/ILoveLin/VlcRecordPlayer GitHub地址:https://github.com/ILoveLin/VlcRecordPlayer …...

WeSpeaker支持C++部署链路

WeSpeaker正式更新C部署链路&#xff0c;推理引擎使用OnnxRuntime&#xff0c;支持从语音中提取Speaker Embedding信息&#xff0c;代码详见WeSpeaker/runtime[1]。 Libtorch和onnx的选择? Speaker Embedding提取任务流程简单&#xff0c;并且声纹模型&#xff08;如ResNet\E…...

window vscode编辑appsmith源码

前言 本来最开始用的idea打开wsl中的appsmith&#xff0c;卡得一批。最后没办法&#xff0c;用自己的电脑装成ubuntu server&#xff0c;然后vscode的远程开发对appsmith源码进行编辑。如果自己电脑内存16个G或者更大可能打开wsl中的估计会还好&#xff0c;我公司电脑只有8g所…...

操作系统面试题

操作系统一、简介篇1.解释一下什么是操作系统2.操作系统的主要功能3.软件访问硬件的几种方式4.操作系统的主要目的是什么5.为什么Linux系统下的应用程序不能直接在Windows下运行6.什么是用户态和内核态7.用户态和内核态如何切换8.什么是内核二、进程和线程篇1.多处理系统的优势…...

Kafka入门(七)

下面聊聊Kafka的配置参数&#xff0c;包括生产者的配置参数、Broker的配置参数、消费者的配置参数。 1、生产者配置参数 acks 该参数控制了生产者的消息发送确认机制&#xff0c;用于指定分区中必须有多少个副本成功接收到消息后生产者才会认为这条消息写入是成功的&#xff0c…...

微服务介绍

微服务 微服务架构发展 微服务这个概念最早是在2011年5月威尼斯的一个软件架构会议上讨论提出的&#xff0c;用于描述一些作为通用架构风格的设计原则&#xff1b;2012年3月在波兰举行的Degree Conference大会&#xff0c;james lewis做演讲&#xff0c;讨论了微服务一些原则…...

搭建SpringBoot多模块微服务项目脚手架(三)

搭建SpringBoot多模块微服务项目脚手架(三) 文章目录搭建SpringBoot多模块微服务项目脚手架(三)1.概述项目结构2.接口返回统一信息模板2.1.封装返回统一信息思路介绍2.2.封装json数据格式1.导入依赖2.封装code码3.封装json格式模板4.使用统一返回信息3.接口统一请求信息模板3.1…...

对vue3中reactive、toref、torefs、ref的详细理解

reactive&#xff1a;将平常的一个对象转换成响应式对象。所谓的响应式对象就是当页面点击修改此对象时&#xff0c;页面无需刷新而在页面上的其他地方有用到这个对象的地方会自动同步修改过来例如&#xff1a; <template><div class"container"><di…...

C++ Primer Plus 第6版 读书笔记(6) 第 6 章 分支语句和逻辑运算符

第 6 章 分支语句和逻辑运算符 C是在 C 语言基础上开发的一种集面向对象编程、泛型编程和过程化编程于一体的编程语言&#xff0c;是C语言的超集。本书是根据2003年的ISO/ANSI C标准编写的&#xff0c;通过大量短小精悍的程序详细而全面地阐述了 C的基本概念和技术&#xff0c;…...

Java Class 加密工具 ClassFinal

Jar包加密工具 ClassFinal介绍环境依赖使用说明下载加密命令行示例maven插件方式无密码模式机器绑定启动加密后的jar启动参数给密码不加密码参数直接启动1. 密码文件获取2. 交互输入参考资料介绍 ClassFinal 是一款 java class 文件安全加密工具&#xff0c;支持直接加密jar包…...

【蓝桥杯集训·每日一题】AcWing 3555. 二叉树

文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴最近公共祖先一、题目 1、原题链接 3555. 二叉树 2、题目描述 给定一个 n 个结点&#xff08;编号 1∼n&#xff09;构成的二叉树&#xff0c;其根结点为 1 号点。 进行 m…...