当前位置: 首页 > news >正文

java计算年化利率

接了业务需求需要计算年化利率,
公式定义:

IRR计算

在计算 IRR 时,我们希望找到一个折现率r,使得净现值(NPV)为零。NPV 函数定义如下:
NPV = ∑ t = 0 n C t ( 1 + r ) t \text{NPV} = \sum_{t=0}^{n} \frac{C_t}{(1 + r)^t} NPV=t=0n(1+r)tCt
其中:

  • C t C_t Ct是第 t 期的现金流。
  • r 是折现率。
  • n 是总期数。

经过调研,采用如下方法。涉及一定的数学思想。

方法一:二分法

使用了二分法(Binary Search)来计算内部收益率(IRR)。这是另一种求解方程根的方法,特别适用于单调函数。以下是对你代码的数学原理的详细解释。

数学原理
你的代码通过以下步骤计算IRR:

初始化:

设置迭代次数上限(LOOPNUM)为1000。
设置最小差异(MINDIF)为0.00000001,以确定何时停止迭代。
定义 minValue 和 maxValue 作为二分法的上下限,初始值分别为0和1。
定义 irrValue 为当前猜测的IRR值,初始为上下限的平均值。
迭代求解:

在每次迭代中,计算 irrValue 的NPV值。
检查NPV值是否接近于0(即流出的现金流量和流入的现金流量的现值之和是否接近0)。
如果NPV值足够接近0,退出循环,返回当前的 irrValue。
如果流出的现金流量大于NPV值,将 maxValue 更新为 irrValue。
如果流出的现金流量小于NPV值,将 minValue 更新为 irrValue。
更新 irrValue 为新的上下限的平均值,继续迭代,直到达到最大迭代次数或满足精度要求。

二分法的优点
简单易实现:二分法不需要计算导数,相对简单。
稳定:二分法在单调函数中总能找到解。
结论
你这段代码通过二分法有效地计算了内部收益率(IRR)。这种方法适用于求解单调函数的根,特别是在金融计算中。代码通过不断缩小搜索范围,逐步逼近使NPV为零的折现率,直到满足精度要求或达到最大迭代次数。

 /** 迭代次数 */public static int LOOPNUM = 1000;/** 最小差异 */public static final double MINDIF = 0.00000001;/*** @desc 方法一:使用二分法来计算内部收益率(IRR)* @param cashFlow 资金流* @return 收益率*/public static String getIrr(List<Double> cashFlow) {//初始流出的现金流量double flowOut = cashFlow.get(0);//maxValue、minValue为二分法的上下限double minValue = 0d;double maxValue = 1d;double irrValue = 0d;int LOOPNUM_ = LOOPNUM;while (LOOPNUM_ > 0) {irrValue = (minValue + maxValue) / 2;double npv = NPV(cashFlow, irrValue);//说明:IRR定义为使得NPV=0的折现率if (Math.abs(flowOut + npv) < MINDIF) {break;} else if (Math.abs(flowOut) > npv) {maxValue = irrValue;} else {minValue = irrValue;}LOOPNUM_--;}double irr = new BigDecimal(String.valueOf(irrValue)).multiply(new BigDecimal(String.valueOf(12))).multiply(new BigDecimal("100")).doubleValue();DecimalFormat df = new DecimalFormat("0.00");return df.format(Math.abs(irr));}/*** 计算净现值 NPV=SIGMA(Ct/(1+r)^t) 其中Ct为第t期现金流,r贴现率  r=IRR/12* @param flowInArr* @param rate* @return*/public static double NPV(List<Double> flowInArr, double rate) {double npv = 0;for (int i = 1; i < flowInArr.size(); i++) {npv += flowInArr.get(i) / Math.pow(1 + rate, i);}return npv;}

方法二:牛顿 求导法

计算步骤

  1. 初始猜测值:设定一个初始的折现率 r 。
  2. 计算 NPV:使用当前的r 值计算 NPV。
  3. 迭代求解:根据迭代算法(例如牛顿-拉夫森法)不断更新 r值,直到 NPV 足够接近零。

牛顿-拉夫森法

牛顿-拉夫森法的基本步骤

假设我们有一个方程 f ( x ) = 0 f(x) = 0 f(x)=0,我们想找到它的根。牛顿-拉夫森法的迭代公式如下:

x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} xn+1=xnf(xn)f(xn)

其中:

  • x n x_n xn 是当前的猜测值。
  • x n + 1 x_{n+1} xn+1 是更新后的猜测值。
  • f ( x n ) f(x_n) f(xn) 是函数在 x n x_n xn 处的值。
  • f ′ ( x n ) f'(x_n) f(xn) 是函数在 x n x_n xn 处的导数值。

牛顿-拉夫森法的迭代公式如下:

r n + 1 = r n − NPV ( r n ) NPV ′ ( r n ) r_{n+1} = r_n - \frac{\text{NPV}(r_n)}{\text{NPV}'(r_n)} rn+1=rnNPV(rn)NPV(rn)

其中:

  • f ( r ) = NPV ( r ) f(r) = \text{NPV}(r) f(r)=NPV(r)
  • f ′ ( r ) f'(r) f(r) f ( r ) f(r) f(r) 关于 r r r 的导数。

通过不断更新 r r r 值,使得 NPV ( r ) \text{NPV}(r) NPV(r) 逐渐逼近零,从而求得 IRR。

/*** 方法二:使用求导计算IRR 牛顿-拉夫森法 NPV(r)=0* r(n+1) = r(n) - NPV(r(n))/dNPV(r(n))** @param cashFlows* @param guess* @return*/public static String calculateIRR(List<Double> cashFlows, double guess) {double precision = 1e-7; // 设定计算精度double x0 = guess;//初始折现率猜测值double x1 = 0.0;int maxIteration = 1000; // 设定最大迭代次数double irr = 0.0;DecimalFormat df = new DecimalFormat("0.00");for (int i = 0; i < maxIteration; i++) {x1 = x0 - npv(cashFlows, x0) / dNpv(cashFlows, x0);if (Math.abs(x1 - x0) <= precision) {irr = new BigDecimal(String.valueOf(x1)).multiply(new BigDecimal(String.valueOf(12))).multiply(new BigDecimal("100")).doubleValue();return df.format(Math.abs(irr));}//将新的折现率赋给x0,作为下一次迭代的起点x0 = x1;}System.out.println(x1);//        return x1;// 如果没有达到设定的精度,则返回最后一次计算的IRR值irr = new BigDecimal(String.valueOf(x1)).multiply(new BigDecimal(String.valueOf(12))).multiply(new BigDecimal("100")).doubleValue();return df.format(Math.abs(irr));}// 计算NPVprivate static double npv(List<Double> cashFlows, double rate) {double npv = 0.0;for (int t = 0; t < cashFlows.size(); t++) {npv += cashFlows.get(t)/ Math.pow(1 + rate, t);}return npv;}/***  计算NPV的一阶导数* dNPV= - t*Ct/(1+r)^(t+1)) 其中Ct为第t期现金流*/private static double dNpv(List<Double> cashFlows, double rate) {double dNpv = 0.0;for (int t = 1; t < cashFlows.size(); t++) {dNpv -= t * cashFlows.get(t) / Math.pow(1 + rate, t + 1);}return dNpv;}

方法三:org.apache.poi.ss.formula.functions.Irr

源码如下:

public final class Irr implements Function {public ValueEval evaluate(final ValueEval[] args, final int srcRowIndex, final int srcColumnIndex) {if (args.length == 0 || args.length > 2) {return ErrorEval.VALUE_INVALID;}try {double[] values = AggregateFunction.ValueCollector.collectValues(args[0]);double guess;if (args.length == 2) {guess = NumericFunction.singleOperandEvaluate(args[1], srcRowIndex, srcColumnIndex);} else {guess = 0.1d;}double result = irr(values, guess);NumericFunction.checkValue(result);return new NumberEval(result);} catch (EvaluationException e) {return e.getErrorEval();}}public static double irr(double[] income) {return irr(income, 0.1d);}public static double irr(double[] values, double guess) {int maxIterationCount = 20;double absoluteAccuracy = 1E-7;double x0 = guess;double x1;int i = 0;while (i < maxIterationCount) {double fValue = 0;double fDerivative = 0;for (int k = 0; k < values.length; k++) {fValue += values[k] / Math.pow(1.0 + x0, k);fDerivative += -k * values[k] / Math.pow(1.0 + x0, k + 1);}x1 = x0 - fValue / fDerivative;if (Math.abs(x1 - x0) <= absoluteAccuracy) {return x1;}x0 = x1;++i;}return Double.NaN;}
}

其中,evaluate 方法是 org.apache.poi.ss.formula.functions.Irr 类中的一个实例方法,用于计算电子表格中公式的值。这是如何在 Apache POI 库中实现自定义函数评估的一部分。
源码使用的是 牛顿-拉夫森法,已经在方法二讲述过,不再赘述。

相关文章:

java计算年化利率

接了业务需求需要计算年化利率&#xff0c; 公式定义&#xff1a; IRR计算 在计算 IRR 时&#xff0c;我们希望找到一个折现率r&#xff0c;使得净现值&#xff08;NPV&#xff09;为零。NPV 函数定义如下&#xff1a; NPV ∑ t 0 n C t ( 1 r ) t \text{NPV} \sum_{t0}…...

深入理解ChatGPT工作原理

在人工智能领域&#xff0c;自然语言处理&#xff08;NLP&#xff09;技术的飞速发展让机器能够更加自然和人类进行交流。OpenAI的ChatGPT作为当前最受关注的NLP模型之一&#xff0c;其出色的对话能力引起了业界和学术界的广泛关注。本文将深入探讨ChatGPT的工作原理&#xff0…...

在 Wed 中应用 MyBatis(同时使用MVC架构模式,以及ThreadLocal 事务控制)

1. 在 Wed 中应用 MyBatis&#xff08;同时使用MVC架构模式&#xff0c;以及ThreadLocal 事务控制&#xff09; 文章目录 1. 在 Wed 中应用 MyBatis&#xff08;同时使用MVC架构模式&#xff0c;以及ThreadLocal 事务控制&#xff09;2. 实现步骤&#xff1a;1. 第一步&#xf…...

Elasticsearch index 设置 false,为什么还可以被检索到?

在 Elasticsearch 中&#xff0c;mapping 定义了索引中的字段类型及其处理方式。 近期有球友提问&#xff0c;为什么设置了 index: false 的字段仍能被检索。 本文将详细探讨这个问题&#xff0c;并引入列式存储的概念&#xff0c;帮助大家更好地理解 Elasticsearch 的存储和查…...

169. 多数元素

题目 给定一个大小为 n 的数组 nums &#xff0c;返回其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的&#xff0c;并且给定的数组总是存在多数元素。 示例 1&#xff1a; 输入&#xff1a;nums [3,2,3]输出&#xff1a;3 …...

ADS基础教程19 - 电磁仿真(EM)基本概念和实操

EM介绍 一、引言二、基本概念1.EM介绍2.Momentum介绍3.FEM介绍4.Substrate介绍 三、创建Layout并进行Momentum仿真1.创建Layout2.添加Microtrip&#xff08;微带线&#xff09;3.添加Substrate4.Momentum仿真 四、总结 一、引言 本章节开始介绍EM的基本概念、内容以及实现具体…...

LabVIEW RT环境中因字符串拼接导致的系统崩溃问题

在LabVIEW实时操作系统&#xff08;RT&#xff09;环境中运行的应用程序出现字符串拼接后死机的问题&#xff0c;通常涉及内存管理、内存泄漏或其他资源管理问题。以下是一些指导和步骤&#xff0c;帮助解决这个问题&#xff1a; 1. 内存泄漏检测 字符串拼接会在内存中创建新…...

深层网络:层数多真的更好吗?

深层网络&#xff1a;层数多真的更好吗&#xff1f; 在深度学习的世界里&#xff0c;"深度"始终是一个热门话题。随着技术的发展&#xff0c;我们有了越来越多的方法来构建更深的神经网络&#xff0c;这似乎暗示着“层数越多&#xff0c;效果越好”。然而&#xff0…...

【QT5】<知识点> QT常用知识(更新中)

目录 一、更改文本颜色和格式 二、QT容器类 三、字符串与整数、浮点数之间的转换 四、QString常用功能 五、SpinBox的属性介绍 六、滑动、滚动、进度条和表盘LCD 七、时间、日期、定时器 一、更改文本颜色和格式 动态设置字体粗体&#xff1a;QFont对象的setBold方法动态…...

如何将AndroidStudio和IDEA的包名改为分层级目录

新版UIAndroidStudio 1、点击项目目录右上角如图所示的三个点点。 2、然后依次取消Hide empty middle package &#xff0c;Flatten package的勾选 3、注意&#xff1a;一定要先取消hide的勾选&#xff0c;不然目录不会完全分级&#xff08;做错了可以反过来重新设置&#x…...

北交字节联合提出ClassDiffusion: 使用显式类别引导的一致性个性化生成。

在个性化生成领域, 微调可能会引起过拟合导致模型无法生成与提示词一致的结果。针对这个问题&#xff0c;北交&字节联合提出ClassDiffusion&#xff0c;来提升个性化生成的一致性。 通过两个重要观察及理论分析提出了新的观点:一致性的损失是个性化概念语义偏移导致的, 还…...

37、matlab矩阵运算

1、前言 矩阵运算是指对矩阵的各种操作和运算&#xff0c;包括矩阵加法、矩阵减法、矩阵乘法、矩阵转置、求逆矩阵等。以下是常见的矩阵运算&#xff1a; 矩阵加法&#xff1a;对应位置的元素相加&#xff0c;要求加数和被加数的维度相同。 A B | a11 b11 | | a12 b12 | | …...

用软件实现的硬件——虚拟机

通过软件实现CPU和内存等硬件所具有的功能&#xff0c;并在计算机中运行循环的计算机技术称为虚拟机。使用虚拟机&#xff0c;就可以在一台计算机中运行多个循环出来的计算机。 近几年的计算机&#xff0c;除了硬件具有较高的性能外&#xff0c;CPU的性能也有了提升。因此&…...

[Shell编程学习路线]--shell中重定向和管道符(详细介绍)

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f6e0;️Shell编程专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年6月12日10点50分 &#x1f004;️文章质量&#xff1a;93分 ——前言—— 在Shell编程中&#xff0c;重定向和管道符是两个…...

Linux命令详解(1)

在Linux操作系统中&#xff0c;命令行界面&#xff08;CLI&#xff09;是一个强大的工具&#xff0c;它允许用户通过键入命令来与系统交互。无论是系统管理员还是普通用户&#xff0c;掌握一些基本的Linux命令都是非常重要的。在本文中&#xff0c;我们将探讨一些常用的Linux命…...

网工内推 | 深信服、中软国际技术支持工程师,最高13k*13薪

01 深信服 &#x1f537;招聘岗位&#xff1a;远程技术支持工程师 &#x1f537;任职要求&#xff1a; 一、专业能力和行业经验&#xff1a; ①具备友商同岗位工作经验1.5年以上&#xff0c;具备良好的分析和判断能力&#xff0c;有独立问题处理思路&#xff0c;具备常见协…...

实现卡片的展开缩放动画

原理&#xff0c;外层包裹一个元素&#xff0c;子元素分别是展开和收起的元素&#xff0c;然后对展开的元素添加动画&#xff0c;动画内容是随时间变化&#xff0c;将卡片的transform&#xff1a;rotateX属性进行调整&#xff0c;因为改变的是子元素的旋转&#xff0c;父元素高…...

实验:贪心算法

实验二&#xff1a;贪心算法 【实验目的】 应用贪心算法求解活动安排问题。 【实验性质】 验证性实验。 【实验要求】 活动安排问题是可以用贪心算法有效求解的很好的例子。 问题&#xff1a;有n个活动的集合A{1,2,…,n}&#xff0c;其中每个活动都要求使用同一资源&…...

Python学习笔记12 -- 有关布尔值的详细说明

一、布尔表达式 最终值为true 或者false 二、常见形式&#xff1a; 1、常量&#xff1a;true false 2、比较运算&#xff1a; and &#xff01; 3、复合运算&#xff1a; and and or 4、其他 例&#xff1a;检测闰年&#xff1a; def specialYearMine(year):if (year%4 …...

SQL-窗口函数合集

目录 1.窗口函数简介2.窗口的定义3.相关题目示例3.1 PERCENT_RANK()2346 以百分比计算排名 3.2 FIRST_VALUE()/LAST_VALUE()/NTH_VALUE()2388 将表中的空值更改为前一个值 1.窗口函数简介 MySQL 开窗函数&#xff08;Window Functions&#xff09;是 MySQL 8.0 版本引入的一个…...

2024 全球软件研发技术大会官宣,50+专家共话软件智能新范式!

2024年的全球软件研发技术大会&#xff08;SDCon&#xff09;由CSDN和高端IT咨询与教育平台Boolan联合主办&#xff0c;将于7月4日至5日在北京威斯汀酒店举行。本次大会的主题为“大模型驱动软件智能化新范式”&#xff0c;旨在探讨大模型和开源技术的发展如何引领全球软件研发…...

opencv快速安装以及各种查看版本命令

安装opencv并查看其版本&#xff0c;直接通过一个可执行文件实现。 #!/bin/bashwget https://codeload.github.com/opencv/opencv/zip/3.4 -O opencv-3.4.zip && unzip opencv-3.4.zip && cd opencv-3.4 && \mkdir build && cd build &&a…...

免费学习通刷课(免费高分)Pro版

文章目录 概要整体架构流程小结 概要 关于上一版的免费高分的学习通刷课&#xff0c;有很多人觉得还得登录太复杂了&#xff0c;然后我又发现了个神脚本&#xff0c;操作简单&#xff0c;可以后台挂着&#xff0c;但是还是建议调整速度到2倍速&#xff0c;然后找到你该刷的课&…...

线性数据结构-队列

队列&#xff08;Queue&#xff09;是一种先进先出&#xff08;First In First Out, FIFO&#xff09;的数据结构&#xff0c;它按照元素进入的顺序来处理元素。队列的基本操作包括&#xff1a; enqueue&#xff1a;在队列的末尾添加一个元素。dequeue&#xff1a;移除队列的第…...

python脚本将视频抽帧为图像数据集

AI应用开发相关目录 本专栏包括AI应用开发相关内容分享&#xff0c;包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧 适用于具备一定算法及Python使用基础的人群 AI应用开发流程概…...

Xmind导入纯文本TXT方法

最近有很多同事咨询我如何在xmind直接导入纯文本txt笔记或者思维导图呢&#xff1f; 解决办法如下&#xff1a; 1.先打开xmind随便打开一个思维导图-文件-导出-marldown 2.选中导出的markdown文件。右键-打开方式-苹果系统选择文本编辑&#xff0c;Win系统选择记事本 3.按照图示…...

深度学习在老年痴呆检测中的应用:数据集综述

深度学习在老年痴呆检测中的应用:数据集综述 引言 老年痴呆(Alzheimer’s Disease, AD)是一种神经退行性疾病,主要影响老年人,导致记忆力、认知能力和行为的逐步衰退。早期检测和诊断对于延缓疾病进展、提高患者生活质量至关重要。近年来,深度学习技术在医学影像分析和…...

【FreeRTOS】内存管理笔记

一、为什么要自己实现内存管理&#xff1f; 后续的章节涉及这些内核对象&#xff1a;task、queue、semaphores和event group等。为了让FreeRTOS更容 易使用&#xff0c;这些内核对象一般都是动态分配&#xff1a;用到时分配&#xff0c;不使用时释放。使用内存的动态管理功能&…...

【数据结构】二叉树:一场关于节点与遍历的艺术之旅

专栏引入 哈喽大家好&#xff0c;我是野生的编程萌新&#xff0c;首先感谢大家的观看。数据结构的学习者大多有这样的想法&#xff1a;数据结构很重要&#xff0c;一定要学好&#xff0c;但数据结构比较抽象&#xff0c;有些算法理解起来很困难&#xff0c;学的很累。我想让大家…...

arm系统中双网卡共存问题

文章目录 单网卡单独运行双网卡共存问题双网卡解决方案方案一方案二方案三验证双网卡通过网卡名获取IP通过TCP与服务端通信参考单网卡单独运行 双网卡共存问题 双网卡解决方案 方案一 https://blog.csdn.net/HowieXue/article/details/75937972 方案二 http://bbs.witech…...

wordpress签到积分主题/腾讯企点客服

...

校庆专题网站建设方案/百度权重查询工具

剑指 Offer 04. 二维数组中的查找 在一个 n * m 的二维数组中&#xff0c;每一行都按照从左到右递增的顺序排序&#xff0c;每一列都按照从上到下递增的顺序排序。请完成一个高效的函数&#xff0c;输入这样的一个二维数组和一个整数&#xff0c;判断数组中是否含有该整数。 示…...

东莞网站建设营销服务平台/seo顾问赚钱吗

一、前言关于apache的ftpserver的核心源码包ftpserver-core中org.apache.ftpserver.util.StringUtils字符串工具类,对字符串常用数据类型替换replaceString、对HTML字符串格式化formatHtml、字符串对于二进制byte[]数组相互转换toHexString/toByteArray等处理。二、代码示例pac…...

新华网两学一做专题网站/行业关键词分类

一、申请变更商标的期限是多久 1、注册商标的注册事项变更后&#xff0c;对变更的期限没有作出明确的规定&#xff0c;但应该及时申请变更注册事项的&#xff0c;以免影响商标权。 2、关于商标申请变更的法律规定 《中华人民共和国商标法实施条例》第三十条 变更商标注册人…...

深圳营销型网站建设服务/西安分类信息seo公司

一个应用&#xff0c;应该保持一套统一的样式&#xff0c;包括Button、EditText、ProgressBar、Toast、Checkbox等各种控件的样式&#xff0c;还包括控件间隔、文字大小和颜色、阴影等等。web的样式用css来定义&#xff0c;而android的样式主要则是通过shape、selector、layer-…...

河南seo优化/宁波seo怎么做优化

如何创建一个 没有子窗口的多文档应用程序 .. 这里涉及到 CCommandLineInfo 类 下面说说这个类的用处 这个类在 MFC应用程序初始化时候调用 可以通过命令参数 来设置 程序初始状态 在 APP类的初始化函数中有如下代码 CCommandLineInfo cmdInfo; . //定义…...