当前位置: 首页 > news >正文

leetcode hot100 之 编辑距离

给你两个单词 word1word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)

原题链接:https://leetcode.cn/problems/edit-distance/

思路

以 dp[i][j] 表示 word1[0: i]、word2[0: j] 的编辑距离。

转移方程:
当 word1[i] == word2[j] 时,此时无需操作,dp[i][j] = dp[i-1][j-1]
当 word1[i] != word2[j] 时,dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
这里 dp[i-1][j-1], dp[i-1][j], dp[i][j-1] 三项分别代表 替换、删除、增加。

边界条件:
当 i = 0 或 j = 0 时,显然 dp[i][0] 或 dp[0][j] 等于另一个子字符串的长度。即 dp[i][0] = i 、dp[0][j] = j

代码

class Solution {
public:int minDistance(string word1, string word2) {// if word1[i] == word2[j], dp[i][j] = dp[i-1][j-1]// else: dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1int m = word1.size();int n = word2.size();vector<vector<int>> dp(m+1, vector<int> (n+1, 0));for (int i = 0; i <= m; i++) {dp[i][0] = i;}for (int j = 0; j <= n; j++) {dp[0][j] = j;}for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {if (word1[i-1] == word2[j-1]) {dp[i][j] = dp[i-1][j-1];} else {dp[i][j] = min(min(dp[i-1][j-1], dp[i-1][j]), dp[i][j-1]) + 1;}}}return dp[m][n];}
};

相关文章:

leetcode hot100 之 编辑距离

给你两个单词 word1 和 word2&#xff0c; 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作&#xff1a; 插入一个字符删除一个字符替换一个字符 输入&#xff1a;word1 “horse”, word2 “ros” 输出&#xff1a;3 解释&#xff1a…...

杨校老师项目之基于SpringBoot的理发店的预约管理系统

原系统是SSMJSP页面构成&#xff0c;先被修改为SpringBoot JSP页面 自助下载渠道: https://download.csdn.net/download/kese7952/89417001&#xff0c;或 点我下载 理发师信息&#xff1a; 理发师详细信息 公告信息 员工登录&#xff1a; 管理员登录...

SpringAI学习及搭建AI原生应用

文章目录 一、SpringAI是什么二、准备工作1.GPT-API-free2.AiCore3.eylink 三、对话案例实现1.创建项目2.实现简单的对话 四、聊天客户端ChatClient1.角色预设2.流式响应3.call和stream的区别 五、聊天模型提示词提示词模板 六、图像模型(文生图)七、语音模型1.文字转语音(文生…...

CobaltStrike权限传递MSF

一、测试环境 操作系统&#xff1a; 1.VMware17 2.kali 6.1.0-kali5-amd64 3.Win10x64 软件&#xff1a; 1.cs4.0 2.metasploit v6.3.4-dev 二、测试思路 1.cs是一款渗透测试工具&#xff0c;但没有漏洞利用的模块&#xff0c;我们可以在拿到目标主机的权限后&#xff0c;将…...

白嫖 kimi 接口 api

说明:kimi当然是免费使用的人工智能AI,但是要调用api是收费的. 项目&#xff1a; https://github.com/LLM-Red-Team/kimi-free-api 原文地址: https://blog.taoshuge.eu.org/p/272/ railway部署 步骤: 打开Github,新建仓库新建名为Dockerfile文件&#xff08;没有后缀&…...

借助ChatGPT完成课题申报书中框架思路写作指南

大家好&#xff0c;感谢关注。我是七哥&#xff0c;一个在高校里不务正业&#xff0c;折腾学术科研AI实操的学术人。可以和我&#xff08;yida985&#xff09;交流学术写作或ChatGPT等AI领域相关问题&#xff0c;多多交流&#xff0c;相互成就&#xff0c;共同进步 在课题申报…...

SuntoryProgrammingContest2024(AtCoder Beginner Contest 357)

https://www.cnblogs.com/yxcblogs/p/18239433 题解写到博客园了&#xff0c;懒得复制了&#xff0c;直接放个链接吧~...

重温共射放大电路

1、放大概念 小功率信号变成一个大功率信号&#xff0c;需要一个核心器件做这件事&#xff0c;核心器件的能量由电源提供&#xff0c;通过核心器件用小功率的信号去控制大电源&#xff0c;来实现能量的转换和控制&#xff0c;前提是不能失真&#xff0c;可以用一系列正弦波进行…...

[DDR5 Jedec] 读操作 Read Command 精讲

依公知及经验整理&#xff0c;原创保护&#xff0c;禁止转载。 专栏 《深入理解DDR》 Read 读取命令也可以视为列读取命令。当与正确的bank地址和列地址结合使用时&#xff0c;通过激活命令&#xff08;行访问&#xff09;移动到检测放大器中的数据&#xff0c; 现在被推送到数…...

opencv 通过滑动条调整阈值处理、边缘检测、轮廓检测、模糊、色调调整和对比度增强参数 并实时预览效果

使用PySimpleGUI库创建了一个图形用户界面(GUI),用于实时处理来自OpenCV摄像头的图像。它允许用户应用不同的图像处理效果,如阈值处理、边缘检测、轮廓检测、模糊、色调调整和对比度增强。用户可以通过滑动条调整相关参数。 完整代码在文章最后,可以运行已经测试; 代码的…...

防火墙安全管理

大多数企业通过互联网传输关键数据&#xff0c;因此部署适当的网络安全措施是必要的&#xff0c;拥有足够的网络安全措施可以为网络基础设施提供大量的保护&#xff0c;防止黑客、恶意用户、病毒攻击和数据盗窃。 网络安全结合了多层保护来限制恶意用户&#xff0c;并仅允许授…...

MyQueue(队列)

目录 一、队列的定义 二、队列方法的实现 1、定义队列 2、后端插入 3、前端操作 4、判断队列是否为空 5、队列大小 三、队列方法的使用 一、队列的定义 队列是一种特殊的线性表&#xff0c;特殊之处在于它只允许在表的前端&#xff08;front&#xff09;进行删除操作&am…...

【Pytorch】一文向您详细介绍 torch.nn.DataParallel() 的作用和用法

【Pytorch】一文向您详细介绍 torch.nn.DataParallel() 的作用和用法 下滑查看解决方法 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff1a;985高…...

Windows本地使用SSH连接VM虚拟机

WIN10 VM17.5 Ubuntu:20.04 1.网路设置 1)选择编辑->更改设置 配置完成 2.修改了服务器文件&#xff0c;修改sshd配置&#xff0c;在此文件下/etc/ssh/sshd_config&#xff0c;以下为比较重要的配置 PasswordAuthentication yes PermitRootLogin yes PubkeyAuthenticat…...

RPC(远程过程调用):技术原理、应用场景与发展趋势

摘要&#xff1a; RPC&#xff08;Remote Procedure Call&#xff09;是一种通信协议&#xff0c;用于实现跨网络的进程间通信。它提供了一种简单高效的方式&#xff0c;使得分布式系统中的不同组件能够像调用本地函数一样调用远程函数。本篇博客将介绍RPC的基本概念&#xff0…...

iSCSI和FC存储

iSCSI存储和FC存储的特点和区别 FC存储和iSCSI存储是两种主要的网络存储解决方案&#xff0c;它们各自在性能、成本和适用场景上有着不同的特点。 FC存储是一种基于光纤通道技术的高性能、低延迟的存储解决方案。它使用专用的光纤通道网络连接存储设备和服务器&#xff0c;确…...

MPT(merkle Patricia trie )及理解solidity里的storage

what&#xff1f; MPT树是一种数据结构&#xff0c;用于在以太坊区块链中高效地存储和检索账户状态、交易历史和其他重要数据。MPT树的设计旨在结合Merkle树和Patricia树的优点&#xff0c;以提供高效的数据存储和验证 MPT树由四种类型的节点组成&#xff1a; **扩展节点&…...

【代码随想录算法训练营第三十五天】 | 1005.K次取反后最大化的数组和 134.加油站 135.分发糖果

贪心章节的题目&#xff0c;做不出来看题解的时候&#xff0c;千万别有 “为什么这都没想到” 的感觉&#xff0c;想不出来是正常的&#xff0c;转变心态 “妙啊&#xff0c;又学到了新的思路” &#xff0c;这样能避免消极的心态对做题效率的影响。 134. 加油站 按卡哥的思路…...

桌面应用开发框架比较:Electron、Flutter、Tauri、React Native 与 Qt

在当今快速发展的技术环境中&#xff0c;对跨平台桌面应用程序的需求正在不断激增。 开发人员面临着选择正确框架之挑战&#xff0c;以便可以高效构建可在 Windows、macOS 和 Linux 上无缝运行的应用程序。 在本文中&#xff0c;我们将比较五种流行的桌面应用程序开发框架&…...

学习笔记丨嵌入式BI分析的12个关键功能

编者注&#xff1a;以下内容节选编译自嵌入式分析厂商Qrvey发表的《What is Embedded Analytics?》&#xff08;什么是嵌入式分析&#xff09;一文&#xff0c;作者为Qrvey产品市场主管Brian Dreyer。 什么是嵌入式分析&#xff1f; 嵌入式分析是指能够将数据分析的特性和功…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...