当前位置: 首页 > news >正文

PythonSQL应用随笔4——PySpark创建SQL临时表

零、前言

Python中直接跑SQL,可以很好的解决数据导过来导过去的问题,本文方法主要针对大运算量时,如何更好地让Python和SQL打好配合。

工具:Zeppelin
语法:PySpark(Apache Spark的Python API)、SparkSQL
数据库类型:Hive

一、相关方法

  • .createOrReplaceTempView()
    在PySpark中,createOrReplaceTempView是一个用于DataFrame的方法,它允许你将DataFrame的内容注册为一个临时的SQL视图,这样就可以在Spark SQL查询中引用这个视图,就像正常查询常规数仓表一样。
  • .toPandas()
    最终取数结果,以DataFrame形式输出。

二、实例

Zeppelin中编辑器与Jupyter Notebook类似,以代码块形式呈现,只是需要提前指定好代码块的语言,如:%pyspark
日常工作中,库存数据是常见的大数据量取数场景,下述代码以取 sku每天的库存 为例展开。

%pyspark
# 工具包及基础配置(视具体情况进行配置,非本文重点,可略过)
import pandas as pd
from pyspark import SparkConf
from pyspark import SparkContext
from pyspark.sql.types import *
from pyspark.sql import SparkSession
from pyspark.sql import SQLContextspark_conf = SparkConf()
spark_conf.setMaster("local[*]")
spark_conf.setAppName("Test")
spark_conf.set("zeppelin.spark.sql.stacktrace", "true")
spark_conf.set('hive.exec.dynamic.partition.mode', 'nonstrict')
spark_conf.set("spark.sql.execution.arrow.enabled", "true")
spark_conf.set("spark.sql.execution.arrow.fallback.enabled", "true")
spark = SparkSession.builder.config(conf=spark_conf).config("zeppelin.spark.sql.stacktrace", "true").enableHiveSupport().getOrCreate()
%pyspark
# 配置取数参数(省事小技巧,避免重复编码,根据实际情况可配置多个参数)
## 开始、结束日期、品牌、……
start_date = '2024-01-01'
end_date = '2024-01-31'
brand = 'brand01'# sql1:日期维表
tmp_dim_date = '''select date_stringfrom edw.dim_datewhere 1=1and date_string >= '{start_date}'and date_string <= '{end_date}''''.format(start_date=start_date, end_date=end_date)
tmp_dim_date = spark.sql(tmp_dim_date).createOrReplaceTempView('tmp_dim_date') # 创建日期临时表:tmp_dim_date# sql2:商品维表
tmp_dim_sku = '''select brand_name,sku_skfrom edw.dim_skuwhere 1=1and brand_name = '{brand}'group by 1, 2'''.format(brand=brand)
tmp_dim_sku = spark.sql(tmp_dim_sku).createOrReplaceTempView('tmp_dim_sku') # 创建sku临时表:tmp_dim_sku# 最终sql:sku每天的库存
sku_stock = '''select tb0.date_string,tb1.sku_sk,sum(coalesce(tb1.stock_qty, 0)) stock_qty -- 库存量from tmp_dim_date tb0 -- 日期临时表left join edw.stock_zipper tb1 -- 库存拉链表on tb1.date_begin <= tb0.date_string -- 开链时间and tb1.date_end > tb0.date_string -- 闭链时间inner join tmp_dim_sku tb2 -- sku临时表on tb1.sku_sk = tb2.sku_skgroup by 1, 2'''
df_sku_stock = spark.sql(tmp_stock_zipper).toPandas()# 删除临时视图(在不需要时及时做垃圾回收,减少资源占用)
spark.catalog.dropTempView("tmp_dim_stockorg")
spark.catalog.dropTempView("tmp_dim_sku")

至此,sku天维度库存数据已取出,实际应用常见可能比本案例复杂许多,故临时表的方法才更重要,一方面能理清楚取数代码的结构,一方面也提高代码性能。

三、总结

NULL

[手动狗头]

本文简短,也没总结的必要,那便在此祝各位新年快乐吧(bushi

相关文章:

PythonSQL应用随笔4——PySpark创建SQL临时表

零、前言 Python中直接跑SQL&#xff0c;可以很好的解决数据导过来导过去的问题&#xff0c;本文方法主要针对大运算量时&#xff0c;如何更好地让Python和SQL打好配合。 工具&#xff1a;Zeppelin 语法&#xff1a;PySpark&#xff08;Apache Spark的Python API&#xff09;…...

C# OpenCvSharp 矩阵计算-determinant、trace、eigen、calcCovarMatrix、solve

🚀 在C#中使用OpenCvSharp库进行矩阵操作和图像处理 在C#中使用OpenCvSharp库,可以实现各种矩阵操作和图像处理功能。以下是对所列函数的详细解释和示例,包括运算过程和结果。📊✨ 1. determinant - 计算行列式 🧮 定义: double determinant(InputArray mtx); 参数…...

知识普及:什么是边缘计算(Edge Computing)?

边缘计算是一种分布式计算架构&#xff0c;它将数据处理、存储和服务功能移近数据产生的边缘位置&#xff0c;即接近数据源和用户的位置&#xff0c;而不是依赖中心化的数据中心或云计算平台。边缘计算的核心思想是在靠近终端设备的位置进行数据处理&#xff0c;以降低延迟、减…...

大型企业IT基础架构和应用运维体系

大型企业IT基础架构和应用运维体系 在数字化转型的浪潮中&#xff0c;大型企业面临着日益复杂的IT环境。高效的IT基础架构和应用运维体系&#xff0c;是确保企业业务连续性和竞争力的关键。本文将探讨大型企业如何构建强健的IT基础架构&#xff0c;并建立高效的应用运维体系&a…...

【源码】16国语言交易所源码/币币交易+期权交易+秒合约交易+永续合约+交割合约+新币申购+投资理财/手机端uniapp纯源码+PC纯源码+后端PHP

测试环境&#xff1a;Linux系统CentOS7.6、宝塔面板、Nginx、PHP7.3、MySQL5.6&#xff0c;根目录public&#xff0c;伪静态laravel5&#xff0c;开启ssl证书 语言&#xff1a;16种&#xff0c;看图 这套带前端uniapp纯源码&#xff0c;手机端和pc端都有纯源码&#xff0c;后…...

word空白页删除不了怎么办?

上方菜单栏点击“视图”&#xff0c;下方点击“大纲视图”。找到文档分页符的位置。将光标放在要删除的分节符前&#xff0c;按下键盘上的“Delet”键删除分页符。...

Java web应用性能分析之【prometheus+Grafana监控springboot服务和服务器监控】

Java web应用性能分析之【java进程问题分析概叙】-CSDN博客 Java web应用性能分析之【java进程问题分析工具】-CSDN博客 Java web应用性能分析之【jvisualvm远程连接云服务器】-CSDN博客 Java web应用性能分析之【java进程问题分析定位】-CSDN博客 Java web应用性能分析之【…...

JavaEE——声明式事务管理案例:实现用户登录

一、案例要求 本案例要求在控制台输入用户名密码&#xff0c;如果用户账号密码正确则显示用户所属班级&#xff0c;如果登录失败则显示登录失败。实现用户登录项目运行成功后控制台效果如下所示。 欢迎来到学生管理系统 请输入用户名&#xff1a; zhangsan 请输入zhangsan的密…...

解决用Three.js实现嘴型和语音同步时只能播放部分部位的问题 Three.js同时渲染播放多个组件变形动画的方法

前言 参考这篇文章ThreeJSChatGPT 实现前端3D数字人AI互动&#xff0c;前面搭后端、训练模型组内小伙伴都没有什么问题&#xff0c;到前端的时候&#xff0c;脸部就出问题了。看我是怎么解决的。 好文章啊&#xff0c;可惜百度前几个都找不到&#xff0c;o(╥﹏╥)o 问题情况 …...

阅读笔记:明朝那些事儿太监弄乱的王朝

阅读豆评高分作品《明朝那些事儿太监弄乱的王朝》第三部&#xff0c;截止到今天告一段落了&#xff0c;前两部皇帝&#xff0c;太子相对比较少&#xff0c;了解故事的主线&#xff0c;分支不算多&#xff0c;记忆起来还能应付过来&#xff0c;第三部皇帝&#xff0c;太子更换的…...

算法第六天:力扣第977题有序数组的平方

一、977.有序数组的平方的链接与题目描述 977. 有序数组的平方的链接如下所示&#xff1a;https://leetcode.cn/problems/squares-of-a-sorted-array/description/https://leetcode.cn/problems/squares-of-a-sorted-array/description/ 给你一个按 非递减顺序 排序的整数数组…...

设计模式学习(二)工厂模式——工厂方法模式

设计模式学习&#xff08;二&#xff09;工厂模式——工厂方法模式 前言工厂方法模式简介示例优点缺点使用场景 前言 前一篇文章介绍了简单工厂模式&#xff0c;提到了简单工厂模式的缺点&#xff08;违反开闭原则&#xff0c;扩展困难&#xff09;&#xff0c;本文要介绍的工…...

TCP与UDP案例

udp不会做拆分整合什么的 多大就是多大...

Adaboost集成学习 | Matlab实现基于CNN-LSTM-Adaboost集成学习时间序列预测(股票价格预测)

目录 效果一览基本介绍模型设计程序设计参考资料 效果一览 基本介绍 Adaboost集成学习 | Matlab实现基于CNN-LSTM-Adaboost集成学习时间序列预测&#xff08;股票价格预测&#xff09; 模型设计 融合Adaboost的CNN-LSTM模型的时间序列预测&#xff0c;下面是一个基本的框架。 …...

你焦虑了吗

前段时间&#xff0c;无意间在图书馆看到一本书《认知觉醒》&#xff0c;书中提到了焦虑的相关话题&#xff0c;从焦虑的根源&#xff0c;焦虑的形式&#xff0c;如何破解焦虑给了我点启示&#xff0c;分享给一下。 引语&#xff1a; 焦虑肯定是你的老朋友了&#xff0c;它总像…...

一键分析Bulk转录组数据

我们前面介绍了经典的转录组分析流程&#xff1a;Hisat2 Stringtie&#xff0c;可以帮助用户快速获得基因的表达量矩阵。 云上生信&#xff0c;未来已来 | 转录组标准分析流程重磅上线&#xff01; RNA STAR 也是一款非常流行的转录组数据分析工具。它不仅可以将测序 Reads 比…...

Django DetailView视图

Django的DetailView是一个用于显示单个对象详情的视图。下面是一个使用DetailView来显示单个书籍详情的例子。 1&#xff0c;添加视图 Test/app3/views.py from django.shortcuts import render# Create your views here. from django.views.generic import ListView from .m…...

openGauss学习笔记-300 openGauss AI特性-AI4DB数据库自治运维-DBMind的AI子功能-SQL Rewriter SQL语句改写

文章目录 openGauss学习笔记-300 openGauss AI特性-AI4DB数据库自治运维-DBMind的AI子功能-SQL Rewriter SQL语句改写300.1 概述300.2 使用指导300.2.1 前提条件300.2.2 使用方法示例300.3 获取帮助300.4 命令参考300.5 常见问题处理openGauss学习笔记-300 openGauss AI特性-AI…...

typescript-泛型

typescript-泛型 泛型程序设计是一种编程风格或编程范式&#xff0c;允许在程序中定义形式类型参数&#xff0c;然后再泛型实例化时候使用实际类型参数来替代形式类型参数&#xff0c;通过泛型&#xff0c;可以定义通用的数据结构或类型&#xff0c;这种数据结构或类型仅仅再它…...

应急响应 | 基本技能 | 01-系统排查

系统排查 目录 系统基本信息 Windows系统Linux系统 用户信息 Windows系统 1、命令行方式2、图形界面方法3、注册表方法4、wmic方法 Linux系统 查看所有用户信息分析超级权限账户查看可登录的用户查看用户错误的登录信息查看所有用户最后的登录信息查看用户最近登录信息查看当…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...