当前位置: 首页 > news >正文

【动态规划】| 路径问题之最小路径和 力扣64

🎗️ 主页:小夜时雨
🎗️专栏:动态规划
🎗️如何活着,是我找寻的方向

优雅

目录

  • 1. 题目解析
  • 2. 代码

1. 题目解析

题目链接: https://leetcode.cn/problems/minimum-path-sum/description/
在这里插入图片描述
这道题目和之前一道题 不同路径1力扣62: https://leetcode.cn/problems/unique-paths/description/ 有相似的地方, 建议先去看看那道题整理一下思路, 会简单一些.

通常动态规划的题目有五个大步骤进行解析, 接下来一一来进行分析.

1. 状态表示

动态规划的重点是状态表示, 我们通过状态表示才可以写出正确的状态转移方程, 状态表示我们通常都是根据 经验+题目 要求来进行定义的.
比如本道题又是一个二维的矩阵, 那么依旧可以定义我们的状态表示为

dp[i][j]: 表示到达 (i, j) 这个位置时, 路径上的数字总和为最小

2. 状态转移方程

  • 根据题目要求, 假如我们走到了 (i,j) 位置时, 我们可以从上面往下走或者是从左面往右走, 即是从 (i-1, j) 或者 (i, j-1) 往 (i, j) 的位置走。
  • 根据状态表示, dp[i][j] 的大小可以由两部分组成, 问的是路径总和为最小, 那么共有两条不同的路径: 从左往右走或者从上往下走,求的应该是这二者中的最小值。
  • 从 (0, 0) 走到 (i-1, j) 的最小路径总和假设为 X , 那么从 (0, 0) 走到 (i, j) 的最小路径总和就是 X + nums[i][j], 注意要加上 (i,j)位置的数字。
  • 正好所对应的就是 dp[i - 1][j] 所表示的含义. 同理 dp[i][j - 1] 也是. 那么状态转移方程应如下表示:

dp[i][j] = Math.min(dp[i - 1][j],dp[i][j - 1]) + nums[i][j]

  • 但是有一个细节问题, 这里和不同路径1 不同的是, 这里需要用到原数组,我们通常也是采取多加一行一列的方式来避免出现 dp 表越界的情况, 所以要注意映射关系。
  • 即是遍历 dp 表填表的过程中的 (i, j)对应原数组的值是 nums[i- 1][j - 1] 要注意,后面还会再强调一遍。
    在这里插入图片描述
    3. 初始化

细节问题: 观察状态转移方程可知, 有可能会有越界的风险, 此处我们依旧采取一种多加一行一列的方式来进行初始化.多加一行一列要保证两点:

  1. 虚拟节点的值要保证后面的dp 表里的值是正确的
  2. 要注意下标的映射关系. 因为我们是多加了一行一列, 所以对应到原始数组就应该行列要减一. (此处用到了原数组, 所以要有这个映射关系)

注意 :
这道题的初始化和前两道题有些许不同

  • 原本的dp[0][0] 最小的路径和就是本身自己, 也就是 dp[0][0] = nums[0][0]. 因为我们多加了一行一列, 所以变成了 dp[1][1] = nums[0][0].
  • 观察下图我们发现,填写 dp[1][1] 的时候需要用到左边和上边值, 因为求的是二者中的最小值, 为了不干扰结果, 设置为0即可。
  • 看下图,但是填写 dp[1][2] 的时候,需要用到上面的值 dp[0][2] 和 dp[1][1] 作比较求最小值,倘如是dp[1][2] 还是默认初始化为 0 的话, 就会影响结果,使dp[1][2] = dp[0][2] + nums[0][1], 导致错误了.
  • dp[1][2] 本该是只有一条路径, 那就是用到 (1,1)走到(1,2),就应该是 dp[1][2] = dp[1][1] + nums[0][1]. 观察结果,让 dp[0][2] 是一个非常大的数字,不影响结果即可。此处通常我们设置为整数最大值或者 0x3f3f3f3f.

看图更容易理解
在这里插入图片描述
4. 填表顺序

观察可知, 填 (i, j) 的值的时候需要用到上一行和左边的值. 所以填表顺序是 从上往下, 从左往右.

5. 返回值

根据题目的要求, 要到达(m, n) 最小路径和是多少, 正好对应 dp[m][n] 的表示. 所以返回 dp[m][n] 即可.

2. 代码

动态规划的代码编写一般都是分为 4 个步骤进行:

  1. 创建 dp 表
  2. 初始化
  3. 填表
  4. 返回值
   // 动态规划// 是不同路径1 的小幅改动版版: https://leetcode.cn/problems/unique-paths/public int uniquePathsWithObstacles(int[][] ob) {// 1.创建 dp表// 2.初始化// 3.填表// 4.返回值// 动态规划 这里的是二维, 所以时空都是O(M*N)int m = ob.length, n = ob[0].length;int[][] dp = new int[m + 1][n + 1];// dp[1][1] = 1;dp[0][1] = 1;// 做好映射关系, 原数组的(0,0) 对应dp表中的(1,1)// 这里填的是 dp 表, 所以建议从(1,1) 开始, 也就是dp表多加了一行一列// 如果是障碍的话, 就直接忽略, 默认就是 0, 也就是表示到不了for(int i = 1; i <= m; i++) { // 从上往下每一行for(int j = 1; j <= n; j++) { // 从左往右每一列if(ob[i - 1][j - 1] == 0) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}}return dp[m][n];}

🎗️🎗️🎗️ 好啦,到这里有关本题的分享就没了,如果感觉做的还不错的话可以点个赞,关注一下,你的支持就是我继续下去的动力,我们下期再见,拜了个拜~ ☆*: .。. o(≧▽≦)o .。.:*☆

相关文章:

【动态规划】| 路径问题之最小路径和 力扣64

&#x1f397;️ 主页&#xff1a;小夜时雨 &#x1f397;️专栏&#xff1a;动态规划 &#x1f397;️如何活着&#xff0c;是我找寻的方向 目录 1. 题目解析2. 代码 1. 题目解析 题目链接: https://leetcode.cn/problems/minimum-path-sum/description/ 这道题目和之前一道…...

如何在vector中插入和删除元素?

在C的std::vector中插入和删除元素通常使用其成员函数来完成。以下是如何在std::vector中插入和删除元素的示例&#xff1a; 插入元素 在末尾插入元素&#xff1a;使用push_back函数。 cpp复制代码 #include <vector> int main() { std::vector<int> v; v.push_…...

独具韵味的移动端 UI 风格

独具韵味的移动端 UI 风格...

【SpringBoot】SpringBoot:构建实时聊天应用

文章目录 引言项目初始化添加依赖 配置WebSocket创建WebSocket配置类创建WebSocket处理器 创建前端页面创建聊天页面 测试与部署示例&#xff1a;编写单元测试 部署扩展功能用户身份验证消息持久化群组聊天 结论 引言 随着实时通信技术的快速发展&#xff0c;聊天应用在现代We…...

基于Matlab的车牌识别停车场出入库计时计费管理系统(含GUI界面)【W6】

简介&#xff1a; 在当今城市化进程加快的环境下&#xff0c;停车管理成为了一个日益重要和复杂的问题。城市中的停车资源有限&#xff0c;如何高效利用和管理这些资源&#xff0c;不仅关乎市民出行便利性&#xff0c;也涉及到城市交通拥堵、环境污染等诸多问题的解决。 传统的…...

大众点评js逆向过程(未完)

相关链接 1、控制流平坦化进行AST 解析 AST网址 2、JS进制转换&#xff08;Function.prototype.call&#xff09; 1、断点调试mtgsig参数 这里mtgsig已经被拼到url中 2、进入后mtgsig已经计算完&#xff0c; ir he(this[b(4326)], !1), 就是加密函数 ![在这里插入图片描述…...

web前端如何设置单元格:深入解析与实用技巧

web前端如何设置单元格&#xff1a;深入解析与实用技巧 在web前端开发中&#xff0c;设置单元格是一个常见且重要的任务。无论是构建数据表格、表单还是其他界面元素&#xff0c;都需要对单元格进行精确的设置和样式调整。那么&#xff0c;web前端究竟如何设置单元格呢&#x…...

龙迅LT9611UXC 2 PORT MIPIDSI/CSI转HDMI 2.1,支持音频IIS/SPDIF输入,支持标准4K60HZ输出

龙迅LT9611UXC描述&#xff1a; LT9611UXC是一个高性能的MIPI DSI/CSI到HDMI2.0转换器。MIPI DSI/CSI输入具有可配置的单端口或双端口&#xff0c;1高速时钟通道和1~4高速数据通道&#xff0c;最大2Gbps/通道&#xff0c;可支持高达16Gbps的总带宽。LT9611UXC支持突发模式DSI视…...

红黑树(C++)

文章目录 写在前面1. 红黑树的概念及性质1. 1 红黑树的概念1. 2 红黑树的性质 2. 红黑树节点的定义3. 红黑树的插入3.1 按照二叉搜索的树规则插入新节点3.2 检测新节点插入后&#xff0c;红黑树的性质是否造到破坏 4.红黑树的删除5.红黑树的验证6.源码 写在前面 在上篇文章中&…...

PyCharm设置不默认打开上次的项目

第一步 第二步 第三步 测试...

Eureka到Nacos迁移实战:解决配置冲突与启动异常

问题&#xff1a;Eureka到Nacos迁移实战&#xff1a;解决配置冲突与启动异常 在进行微服务架构升级&#xff0c;特别是注册中心从Eureka转向Nacos的过程中&#xff0c;我遇到了一个典型的技术挑战。目标是为了减少因配置变更导致的服务重启频率&#xff0c;我决定拥抱Nacos以其…...

k8s 小技巧: 查看 Pod 上运行的容器

目录 1. 示例 Pod 的定义文件2. kubectl describe pod&#xff08;推荐&#xff09;3. kubectl get pod3.1 json 格式3.2 yaml 格式 4. 其他操作 1. 示例 Pod 的定义文件 # 文章中所用 pod 的 yaml 定义文件&#xff0c; multi-container.yaml apiVersion: v1 kind: Pod metad…...

【Git】基础操作

初识Git 版本控制的方式&#xff1a; 集中式版本控制工具&#xff1a;版本库是集中存放在中央服务器的&#xff0c;team里每个人work时从中央服务器下载代码&#xff0c;是必须联网才能工作&#xff0c;局域网或者互联网。个人修改之后要提交到中央版本库 例如&#xff1a;SVM和…...

Linux:基础IO(二.缓冲区、模拟一下缓冲区、详细讲解文件系统)

上次介绍了&#xff1a;Linux&#xff1a;基础IO&#xff08;一.C语言文件接口与系统调用、默认打开的文件流、详解文件描述符与dup2系统调用&#xff09; 文章目录 1.缓冲区1.1概念1.2作用与意义 2.语言级别的缓冲区2.1刷新策略2.2具体在哪里2.3支持格式化 3.自己来模拟一下缓…...

事件传播机制 与 责任链模式

1、基本概念 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为型设计模式&#xff0c;将请求沿着处理链传递&#xff0c;直到有一个对象能够处理为止。 2、实现的模块有&#xff1a; Handler&#xff08;处理者&#xff09;&#xff1a;定义一个…...

uniapp 展示地图,并获取当前位置信息(精确位置)

使用uniapp 提供的map标签 <map :keymapIndex class"container" :latitude"latitude" :longitude"longitude" ></map> 页面初始化的时候&#xff0c;获取当前的位置信息 created() {let that thisuni.getLocation({type: gcj02…...

Autosar实践——诊断配置(DaVinci Configuration)

文章目录 一、制作诊断数据库文件(cdd文件)二、导入诊断数据库文件并修复模块生成的问题三、创建SWC CS接口Service Ports四、创建Service Runnable五、关联SWC和DCM/DEM模块六、RTE代码编写22服务2E服务31服务DTC Set/Get关联文章列表: Autosar-软件架构 Autosar诊断-简介和…...

植物大战僵尸杂交版全新版v2.1解决全屏问题

文章目录 &#x1f68b;一、植物大战僵尸杂交版❤️1. 游戏介绍&#x1f4a5;2. 如何下载《植物大战僵尸杂交版》 &#x1f680;二、解决最新2.1版的全屏问题&#x1f308;三、画质增强以及减少闪退 &#x1f68b;一、植物大战僵尸杂交版 《植物大战僵尸杂交版》是一款在原版《…...

【code-server】Code-Server 安装部署

Code-Server 安装部署 1.环境准备 可以参考 https://coder.com/docs/code-server/install code-server的安装流程进行安装&#xff0c;主机环境是 Centos7 建议使用 docker 方式进行安装&#xff0c;可能会出现如下报错&#xff0c;需要升级 GNC 的版本&#xff0c;由于影响较…...

博客摘录「 YOLOv5模型剪枝压缩」2024年5月11日

添加L1正则来约束BN层系数 语义边缘检测和语义分割的关系调研结果为&#xff0c;语义信息可以用来增强语义分割的效果&#xff0c;也有一定的优点和采用理由&#xff0c;但此类论文的数量并不是很多&#xff0c;语义分割的多数方法还是使用深度学习直接做像素分类。在对比两者…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...