C/C++ Adaline自适应线性神经网络算法详解及源码
个人名片
🎓作者简介:java领域优质创作者
🌐个人主页:码农阿豪
📞工作室:新空间代码工作室(提供各种软件服务)
💌个人邮箱:[2435024119@qq.com]
📱个人微信:15279484656
🌐个人导航网站:www.forff.top
💡座右铭:总有人要赢。为什么不能是我呢?
- 专栏导航:
码农阿豪系列专栏导航
面试专栏:收集了java相关高频面试题,面试实战总结🍻🎉🖥️
Spring5系列专栏:整理了Spring5重要知识点与实战演练,有案例可直接使用🚀🔧💻
Redis专栏:Redis从零到一学习分享,经验总结,案例实战💐📝💡
全栈系列专栏:海纳百川有容乃大,可能你想要的东西里面都有🤸🌱🚀
标题:C/C++ Adaline自适应线性神经网络算法详解及源码
目录
- 1. 简介
- 2. 原理
- 3. 实现步骤
- 3.1 初始化权重
- 3.2 前向传播
- 3.3 计算误差
- 3.4 更新权重
- 3.5 重复步骤2-4
- 4. 源码示例
- 5. 总结
1. 简介
Adaline(自适应线性神经元)是一种用于模式分类的线性神经网络。它与感知器类似,但具有一些改进,如使用连续的激活函数和梯度下降算法进行权重调整。本文将介绍Adaline算法的原理、实现步骤以及用C/C++编写的源码。
2. 原理
Adaline的原理类似于感知器,但是输出不是一个离散的值,而是一个连续的值。它的输入与输出之间存在一个线性关系:
[ y = \sum_{i=1}^{n} w_i \cdot x_i ]
其中,( y ) 是输出,( w_i ) 是权重,( x_i ) 是输入。
Adaline的学习算法是基于梯度下降的。它的目标是最小化预测输出与实际输出之间的误差,即最小化成本函数:
[ J(w) = \frac{1}{2} \sum_{i=1}^{n} (target_i - output_i)^2 ]
通过梯度下降法更新权重,使得成本函数逐步减小,最终达到收敛。
3. 实现步骤
3.1 初始化权重
初始化权重 ( w_i ),可以随机初始化或者使用零值初始化。
3.2 前向传播
对于每个输入样本,计算输出 ( y ):
[ y = \sum_{i=1}^{n} w_i \cdot x_i ]
3.3 计算误差
计算预测输出与实际输出之间的误差:
[ error = target - output ]
3.4 更新权重
根据误差使用梯度下降法更新权重:
[ w_i = w_i + \alpha \cdot error \cdot x_i ]
其中,( \alpha ) 是学习率。
3.5 重复步骤2-4
重复执行前向传播、计算误差和更新权重的步骤,直到达到收敛或者达到最大迭代次数。
4. 源码示例
下面是一个使用C/C++编写的简单的Adaline算法示例:
#include <iostream>
#include <vector>using namespace std;class Adaline {
private:vector<double> weights;double learningRate;public:Adaline(int inputSize, double alpha) : learningRate(alpha) {// Initialize weights with zerosweights.resize(inputSize, 0.0);}double predict(vector<double>& inputs) {double output = 0.0;for (int i = 0; i < inputs.size(); ++i) {output += weights[i] * inputs[i];}return output;}void train(vector<vector<double>>& trainingData, vector<double>& targets, int epochs) {for (int epoch = 0; epoch < epochs; ++epoch) {for (int i = 0; i < trainingData.size(); ++i) {double prediction = predict(trainingData[i]);double error = targets[i] - prediction;for (int j = 0; j < weights.size(); ++j) {weights[j] += learningRate * error * trainingData[i][j];}}}}
};int main() {vector<vector<double>> trainingData = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};vector<double> targets = {-1, -1, -1, 1};Adaline adaline(2, 0.1);adaline.train(trainingData, targets, 1000);// Test the trained modelfor (int i = 0; i < trainingData.size(); ++i) {cout << "Input: " << trainingData[i][0] << ", " << trainingData[i][1] << " Output: " << adaline.predict(trainingData[i]) << endl;}return 0;
}
5. 总结
通过本文的介绍,你了解了Adaline算法的原理、实现步骤,并通过C/C++源码示例实现了一个简单的Adaline模型。希望本文对你有所帮助,欢迎在评论区分享你的想法和建议!
相关文章:
C/C++ Adaline自适应线性神经网络算法详解及源码
个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119qq.com] 📱…...
UniApp+Vue3使用Vant-微信小程序组件
第一步:打开创建好的UniappVue3的项目 第二步:下载Vant-Weapp npm i vant/weapp -S --production 第三步:修改目录名称 wxcomponents 必须是wxcomponents 第四步:将下载好的vant中的dist目录剪切到当前wxcomponents目录下 第五…...
python IP 端口 socket tcp 介绍
IP 端口 介绍 1、IP IP地址是分配给网络设备上网使用的数字标签,它能够标识网络中唯一的一台设备 windows环境可以使用 ipconfig 来查看自己的iplinux环境可以使用 ifconfig 来查看自己的ip 2、端口 端口是传输数据的通道,每个操作系统上都有 65535个…...
【动态规划】| 路径问题之最小路径和 力扣64
🎗️ 主页:小夜时雨 🎗️专栏:动态规划 🎗️如何活着,是我找寻的方向 目录 1. 题目解析2. 代码 1. 题目解析 题目链接: https://leetcode.cn/problems/minimum-path-sum/description/ 这道题目和之前一道…...
如何在vector中插入和删除元素?
在C的std::vector中插入和删除元素通常使用其成员函数来完成。以下是如何在std::vector中插入和删除元素的示例: 插入元素 在末尾插入元素:使用push_back函数。 cpp复制代码 #include <vector> int main() { std::vector<int> v; v.push_…...
独具韵味的移动端 UI 风格
独具韵味的移动端 UI 风格...
【SpringBoot】SpringBoot:构建实时聊天应用
文章目录 引言项目初始化添加依赖 配置WebSocket创建WebSocket配置类创建WebSocket处理器 创建前端页面创建聊天页面 测试与部署示例:编写单元测试 部署扩展功能用户身份验证消息持久化群组聊天 结论 引言 随着实时通信技术的快速发展,聊天应用在现代We…...
基于Matlab的车牌识别停车场出入库计时计费管理系统(含GUI界面)【W6】
简介: 在当今城市化进程加快的环境下,停车管理成为了一个日益重要和复杂的问题。城市中的停车资源有限,如何高效利用和管理这些资源,不仅关乎市民出行便利性,也涉及到城市交通拥堵、环境污染等诸多问题的解决。 传统的…...
大众点评js逆向过程(未完)
相关链接 1、控制流平坦化进行AST 解析 AST网址 2、JS进制转换(Function.prototype.call) 1、断点调试mtgsig参数 这里mtgsig已经被拼到url中 2、进入后mtgsig已经计算完, ir he(this[b(4326)], !1), 就是加密函数 ![在这里插入图片描述…...
web前端如何设置单元格:深入解析与实用技巧
web前端如何设置单元格:深入解析与实用技巧 在web前端开发中,设置单元格是一个常见且重要的任务。无论是构建数据表格、表单还是其他界面元素,都需要对单元格进行精确的设置和样式调整。那么,web前端究竟如何设置单元格呢&#x…...
龙迅LT9611UXC 2 PORT MIPIDSI/CSI转HDMI 2.1,支持音频IIS/SPDIF输入,支持标准4K60HZ输出
龙迅LT9611UXC描述: LT9611UXC是一个高性能的MIPI DSI/CSI到HDMI2.0转换器。MIPI DSI/CSI输入具有可配置的单端口或双端口,1高速时钟通道和1~4高速数据通道,最大2Gbps/通道,可支持高达16Gbps的总带宽。LT9611UXC支持突发模式DSI视…...
红黑树(C++)
文章目录 写在前面1. 红黑树的概念及性质1. 1 红黑树的概念1. 2 红黑树的性质 2. 红黑树节点的定义3. 红黑树的插入3.1 按照二叉搜索的树规则插入新节点3.2 检测新节点插入后,红黑树的性质是否造到破坏 4.红黑树的删除5.红黑树的验证6.源码 写在前面 在上篇文章中&…...
PyCharm设置不默认打开上次的项目
第一步 第二步 第三步 测试...
Eureka到Nacos迁移实战:解决配置冲突与启动异常
问题:Eureka到Nacos迁移实战:解决配置冲突与启动异常 在进行微服务架构升级,特别是注册中心从Eureka转向Nacos的过程中,我遇到了一个典型的技术挑战。目标是为了减少因配置变更导致的服务重启频率,我决定拥抱Nacos以其…...
k8s 小技巧: 查看 Pod 上运行的容器
目录 1. 示例 Pod 的定义文件2. kubectl describe pod(推荐)3. kubectl get pod3.1 json 格式3.2 yaml 格式 4. 其他操作 1. 示例 Pod 的定义文件 # 文章中所用 pod 的 yaml 定义文件, multi-container.yaml apiVersion: v1 kind: Pod metad…...
【Git】基础操作
初识Git 版本控制的方式: 集中式版本控制工具:版本库是集中存放在中央服务器的,team里每个人work时从中央服务器下载代码,是必须联网才能工作,局域网或者互联网。个人修改之后要提交到中央版本库 例如:SVM和…...
Linux:基础IO(二.缓冲区、模拟一下缓冲区、详细讲解文件系统)
上次介绍了:Linux:基础IO(一.C语言文件接口与系统调用、默认打开的文件流、详解文件描述符与dup2系统调用) 文章目录 1.缓冲区1.1概念1.2作用与意义 2.语言级别的缓冲区2.1刷新策略2.2具体在哪里2.3支持格式化 3.自己来模拟一下缓…...
事件传播机制 与 责任链模式
1、基本概念 责任链模式(Chain of Responsibility Pattern)是一种行为型设计模式,将请求沿着处理链传递,直到有一个对象能够处理为止。 2、实现的模块有: Handler(处理者):定义一个…...
uniapp 展示地图,并获取当前位置信息(精确位置)
使用uniapp 提供的map标签 <map :keymapIndex class"container" :latitude"latitude" :longitude"longitude" ></map> 页面初始化的时候,获取当前的位置信息 created() {let that thisuni.getLocation({type: gcj02…...
Autosar实践——诊断配置(DaVinci Configuration)
文章目录 一、制作诊断数据库文件(cdd文件)二、导入诊断数据库文件并修复模块生成的问题三、创建SWC CS接口Service Ports四、创建Service Runnable五、关联SWC和DCM/DEM模块六、RTE代码编写22服务2E服务31服务DTC Set/Get关联文章列表: Autosar-软件架构 Autosar诊断-简介和…...
植物大战僵尸杂交版全新版v2.1解决全屏问题
文章目录 🚋一、植物大战僵尸杂交版❤️1. 游戏介绍💥2. 如何下载《植物大战僵尸杂交版》 🚀二、解决最新2.1版的全屏问题🌈三、画质增强以及减少闪退 🚋一、植物大战僵尸杂交版 《植物大战僵尸杂交版》是一款在原版《…...
【code-server】Code-Server 安装部署
Code-Server 安装部署 1.环境准备 可以参考 https://coder.com/docs/code-server/install code-server的安装流程进行安装,主机环境是 Centos7 建议使用 docker 方式进行安装,可能会出现如下报错,需要升级 GNC 的版本,由于影响较…...
博客摘录「 YOLOv5模型剪枝压缩」2024年5月11日
添加L1正则来约束BN层系数 语义边缘检测和语义分割的关系调研结果为,语义信息可以用来增强语义分割的效果,也有一定的优点和采用理由,但此类论文的数量并不是很多,语义分割的多数方法还是使用深度学习直接做像素分类。在对比两者…...
HttpSecurity
这是Spring Security提供的配置类, 用户保护基于HTTP的请求 ,通过HttpSecurity可以设置各种安全设置{认证,授权,CSRF保护,会话管理,异常处理} 主要功能和配置: 1.认证配置: 配置登录和登出功能,指定登录页面、登录处理 URL、成功和失败处理器等。配置认证方式,如表单登录、…...
Mysql union语句
开源项目SDK:https://github.com/mingyang66/spring-parent 个人文档:https://mingyang66.github.io/raccoon-docs/#/ mysql union操作符用于连接两个以上的select语句的结果组合到一个结果集,并去除重复的行,每个select语句的雷叔…...
MySQL之高级特性(四)
高级特性 查询缓存 什么情况下查询缓存能发挥作用 并不是什么情况下查询缓存都会提高系统性能的。缓存和失效都会带来额外的消耗,所以只有当缓存带来的资源节约大于本身的资源消耗时才会给系统带来性能提升。这跟具体的服务器压力模型有关。理论上,可…...
roles安装wordpress
debug模块 1.如何查看ansible-playbook执行过程中产生的具体信息 vim test3.yaml --- - hosts: allremote_user: roottasks:- name: lsshell: ls /rootregister: var_stdout # register:将var_stdout注册为变量- name: debugdebug:var: var_stdout # 查看所有的输出信息#var…...
【Python高级编程】饼状图中autopct和startangle用来做什么的
autopct 设置饼状图中每个扇区的百分比标签。接受一个格式字符串,用于指定如何格式化标签。默认值为 %.1f%%,表示保留一位小数的百分比格式。可以设置为 None 以禁用百分比标签。 startangle 设置饼状图中第一个扇区的起始角度。角度以顺时针方向从 3…...
【ARM Coresight Debug 系列 -- ARMv8/v9 Watchpoint 软件实现地址监控详细介绍】
请阅读【嵌入式开发学习必备专栏 】 文章目录 ARMv8/v9 Watchpoint exceptionsWatchpoint 配置信息读取Execution conditionsWatchpoint data address comparisonsSize of the data accessWatchpoint 软件配置流程Watchpoint Type 使用介绍WT, Bit [20]: Watchpoint TypeLBN, B…...
jvm工具-jps、jstat、jmap、jstack
一、jps jps -v 【输出进程启动参数】 [rootVM-8-2-centos ~]# jps -v 12401 Jps -Dapplication.home/usr/local/jdk1.8.0_241 -Xms8m 16964 jar 其他参考 Java八股文必看,入门到深入理解jvm虚拟机之基础故障指令【jps,jstate...】-CSDN博客 二、j…...
百度快速排名技术培训教程/免费的关键词优化软件
一. JVM内存区域的划分 1.1 java虚拟机运行时数据区 java虚拟机运行时数据区分布图: JVM栈(Java Virtual Machine Stacks): Java中一个线程就会相应有一个线程栈与之对应,因为不同的线程执行逻辑有所不同࿰…...
营销型网站建设专家/seo专员是什么
jmeter 脚本录制 ******************* 脚本录制 浏览器设置代理:工具 > internet 选项 > 连接 > 局域网设置 注意:录制完成后需要关闭代理,否则无法上网 jmeter 测试计划添加线程组、http cookie管理器 测试计划 > 非测试元件 &…...
青岛市建设网站/百度网盘手机版
某天无意中看见一道关于Integer的笔试题,问下面的输出结果是多少:package test;public class Test {public static void main(String[] args) {Integer i1 127;Integer i2 127;System.err.println(i1 i2);i1 128;i2 128;System.err.println(i1 i2)…...
天津网站建设交易/引流用什么话术更吸引人
7、今有三分之一,五分之二。问合之得几何? 答曰:十五分之十一。 译文: 设有分数13、25,问相加得多少? 答:1115。...
凡客建站网/广告投放代理商加盟
1、安装 node.js npm 管理工具 2、下载 zepto.js 源代码:https://github.com/madrobby/zepto.git 3、打开项目,找到源代码内的【mark】文件,修改文件41行代码: 备注:fx fx_methods 是新增的2个模块 4、执行命令&…...
广南网站建设/网络优化基础知识
本文由曹素杰(阿里云 MVP 石化盈科信息技术有限责任公司 高级工程师)提供,若使用请标明出处。 内存溢出的表现:a) CPU会飙升到100%,如果是多核则乘以核数b) 日志中会出现OutOfMemoryError 分析原因步骤:a) …...