基于协同过滤算法的电影推荐
基于协同过滤算法的电影推荐
电影推荐系统使用了基于**协同过滤(Collaborative Filtering)的算法来生成推荐。具体来说,使用了基于用户的协同过滤(User-Based Collaborative Filtering)**算法,步骤如下:
- 数据预处理:将用户对电影的评分数据读入内存,形成一个用户-电影评分矩阵。
- 相似度计算:使用余弦相似度计算目标用户与其他用户之间的相似度。
- 评分预测:根据相似度和其他用户的评分,对目标用户未评分的电影进行评分预测。
- 生成推荐:选取评分预测值最高的前N部电影作为推荐结果。
以下是详细的代码及其解释:
package com.sf;import java.util.*;public class MovieRecommendation {// 示例评分矩阵// 行表示用户,列表示电影// 元素值表示用户对电影的评分,0表示未评分static double[][] ratings = {{4, 0, 0, 5, 1, 0, 0},{5, 5, 4, 0, 0, 0, 0},{0, 0, 0, 2, 4, 5, 0},{0, 3, 0, 0, 0, 0, 3}};// 计算两个用户之间的余弦相似度public static double cosineSimilarity(double[] user1, double[] user2) {double dotProduct = 0.0;double normUser1 = 0.0;double normUser2 = 0.0;for (int i = 0; i < user1.length; i++) {dotProduct += user1[i] * user2[i]; // 计算点积normUser1 += Math.pow(user1[i], 2); // 计算用户1的向量模normUser2 += Math.pow(user2[i], 2); // 计算用户2的向量模}return dotProduct / (Math.sqrt(normUser1) * Math.sqrt(normUser2)); // 返回余弦相似度}// 为特定用户生成电影推荐public static List<Integer> recommendMovies(int userId, int topN) {double[] userRatings = ratings[userId]; // 获取目标用户的评分数据double[] similarityScores = new double[ratings.length]; // 用于存储相似度得分// 计算目标用户与其他所有用户的相似度得分for (int i = 0; i < ratings.length; i++) {if (i != userId) {similarityScores[i] = cosineSimilarity(userRatings, ratings[i]);}}// 计算每部电影的加权得分double[] weightedScores = new double[ratings[0].length];for (int i = 0; i < ratings.length; i++) {if (i != userId) {for (int j = 0; j < ratings[i].length; j++) {weightedScores[j] += similarityScores[i] * ratings[i][j]; // 累加加权得分}}}// 创建一个优先队列,用于存储按得分排序的电影PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> Double.compare(weightedScores[b], weightedScores[a]));// 将未评分的电影加入优先队列for (int i = 0; i < userRatings.length; i++) {if (userRatings[i] == 0) {pq.offer(i);}}// 获取前N部推荐电影List<Integer> recommendedMovies = new ArrayList<>();for (int i = 0; i < topN && !pq.isEmpty(); i++) {recommendedMovies.add(pq.poll());}return recommendedMovies;}public static void main(String[] args) {int userId = 0; // 假设我们为用户ID 0 生成推荐int topN = 3; // 推荐前3部电影List<Integer> recommendations = recommendMovies(userId, topN);// 输出推荐结果System.out.println("推荐给用户 " + userId + " 的电影ID是:" + recommendations);}
}
详细解释
-
数据预处理:代码中的
ratings矩阵是用户对电影的评分数据。行表示不同的用户,列表示不同的电影,元素值表示评分,0表示该用户未对该电影评分。 -
余弦相似度计算:
cosineSimilarity方法用于计算两个用户之间的相似度。公式如下:
其中,A 和 B 是两个用户的评分向量。
-
评分预测和加权得分:
- 对于目标用户,计算其与其他所有用户的相似度得分。
- 使用这些相似度得分和其他用户的评分,计算每部电影的加权得分。加权得分越高,表明该电影越可能受到目标用户的喜爱。
-
生成推荐:
- 将目标用户未评分的电影按加权得分排序,选取得分最高的前N部电影作为推荐结果。
- 使用优先队列来存储和排序未评分的电影,确保获取得分最高的电影。
通过以上步骤,推荐系统可以为目标用户生成个性化的电影推荐列表。
相关文章:
基于协同过滤算法的电影推荐
基于协同过滤算法的电影推荐 电影推荐系统使用了基于**协同过滤(Collaborative Filtering)的算法来生成推荐。具体来说,使用了基于用户的协同过滤(User-Based Collaborative Filtering)**算法,步骤如下&am…...
IEEE754、linear11、linear16浮点数应用原理
IEEE754、linear11、linear16浮点数应用原理 1 浮点数应用1.1 IEEE754 浮点数标准1.2 PMBUS浮点数格式 2 浮点数原理2.1 IEEE754 浮点数解析2.2 PMBUS浮点数解析 3 浮点数代码应用3.1 IEEE754 浮点数应用3.1.1 将浮点变量赋值,直接打印整型(32位…...
6、 垃圾回收 浏览器事件循环
垃圾回收 & 浏览器事件循环 垃圾回收引用计数算法标记清除(mark-sweep)算法标记整理(Mark-Compact)算法 内存管理浏览器事件循环宏任务微任务整体流程 垃圾回收 垃圾回收,又称为:GC(garbag…...
Java多线程面试重点-2
16.Synchronized关键字加在静态方法和实例方法的区别? 修饰静态方法,是对类进行加锁(Class对象),如果该类中有methodA和methodB都是被Synch修饰的静态方法,此时有两个线程T1、T2分别调用methodA()和methodB()&#x…...
LLaMA Factory多卡微调的实战教程(持续更新)
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…...
IOUtils的妙用
查看IOUtils的api文档,它的方法大部分都是重载的,方法的用法总结如下: 方法名使用说明buffer将传入的流进行包装,变成缓冲流。并可以通过参数指定缓冲大小closeQueitly关闭流contentEquals比较两个流中的内容的是否一致copy将输入…...
目标检测——室内服务机器人LifelongSLAM数据集
引言 亲爱的读者们,您是否在寻找某个特定的数据集,用于研究或项目实践?欢迎您在评论区留言,或者通过公众号私信告诉我,您想要的数据集的类型主题。小编会竭尽全力为您寻找,并在找到后第一时间与您分享。 …...
Mysql学习笔记-进阶篇
一、存储引擎 1、MYSQL体系结构 连接层、服务层、引擎层、存储层; 2、存储引擎简介 存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。存储引擎是基于表的,而不是库的,所以存储引擎也可被称为表类型。 1)在创…...
AI写真:ControlNet 之 InstantID
但是 IPAdapter-FaceId 目前只在 SD 1.5 模型上表现较好,SDXL 模型上的表现较差,不能用于实际生产。可是很多同学已经在使用SDXL了,而且SDXL确实整体上出图效果更好,怎么办? 这篇文章就来给大家介绍一个在SDXL中创作A…...
单元测试的思考与实践
1. 什么是单元测试 通常来说单元测试,是一种自动化测试,同时包含一下特性: 验证很小的一段代码(业务意义 或者 代码逻辑 上不可再分割的单元),能够更准确的定位到问题代码的位置 能够快速运行(…...
C# Socket通讯简单Demo
C# Socket通讯简单Demo Client端Listener端 Client端 static void Main(string[] args) {XSocketService XSocketService new XSocketService();XSocketService.Init();while (true){Console.Write("请输入消息:");var msg Console.ReadLine();XSocket…...
视频融合共享平台LntonCVS视频监控管理平台技术方案详细介绍
LntonCVS国标视频综合管理平台是一款以视频为核心的智慧物联应用平台。它基于分布式、负载均衡等流媒体技术进行开发,提供广泛兼容、安全可靠、开放共享的视频综合服务。该平台具备多种功能,包括视频直播、录像、回放、检索、云存储、告警上报、语音对讲…...
C#ListView的单元格支持添加基本及自定义任意控件
功能说明 使用ListView时,希望可以在单元格显示图片或其他控件,发现原生的ListView不支持,于是通过拓展,实现ListView可以显示任意控件的功能,效果如下: 实现方法 本来想着在单元格里面实现控件的自绘的…...
数据库选型实践:如何避开分库分表痛点 | OceanBase用户实践
随着企业业务的不断发展,数据量往往呈现出快速的增长趋势。使用MySQL的用户面对这种增长,普遍选择采用分库分表技术作为应对方案。然而,这一方案常在后期会遇到很多痛点。 分库分表的痛点 痛点 1:难以保证数据一致性。由于分库分…...
3个火火火的AI项目,开源了!
友友们,今天我要给你们安利三个超酷的开源项目,它们都和AI有关,而且每一个都能让你的日常生活变得更加有趣和便捷!(最近AI绘图又又超神了,分享以下美图养眼) 01 字节出品,文字转语音Seed-TTS 字节推出了一…...
算法 | 子集数排列树满m叉树二分搜索归并排序快速排序
子集树:O(2^n) 一个序列的所有子集为2^n,即可看成具有2^n个叶节点的满二叉树 int backtrack(int k) //k表示扩展结点在解空间树中所处的层次 {if(k>n) //n标识问题的规模output(x); //x是存放当前解的一维数组if(constraint(k)…...
SpringBoot配置第三方专业缓存技术jetcache方法缓存方案
jetcache方法缓存 我们可以给每个方法配置缓存方案 JetCache 是一个基于 Java 的缓存库,支持多种缓存方案和缓存策略,主要用于提升应用程序的性能和响应速度。它提供了多种缓存模式和特性,可以根据需求选择合适的缓存方案。 JetCache 的主…...
游戏开发丨基于PyGame的消消乐小游戏
文章目录 写在前面PyGame消消乐注意事项系列文章写在后面 写在前面 本期内容:基于pygame实现喜羊羊与灰太狼版消消乐小游戏 下载地址:https://download.csdn.net/download/m0_68111267/88700193 实验环境 python3.11及以上pycharmpygame 安装pygame…...
软件项目管理概述
1.什么是项目? 2.项目管理的定义 3.项目管理的本质 4.项目成功的标志 5.项目管理的基本方法 6.项目的生命周期(启动 计划 执行 控制 结束) 7.结合生活中的某件事,谈谈项目管理的作用 项目管理在日常生活中扮演着重要的角色&…...
FastAdmin后台开发框架 lang 任意文件读取漏洞复现
0x01 产品简介 FastAdmin是一款基于PHPBootstrap的开源后台框架,专为开发者精心打造。它基于ThinkPHP和Bootstrap两大主流技术构建,拥有完善的权限管理系统和一键生成CRUD等强大功能。FastAdmin致力于提高开发效率,降低开发成本,…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
