当前位置: 首页 > news >正文

【数学】什么是方法矩估计?和最大似然估计是什么关系?

背景

方法矩估计(Method of Moments Estimation)和最大似然估计(Maximum Likelihood Estimation, MLE)是两种常用的参数估计方法。方法矩估计基于样本矩与总体矩的关系,通过样本数据计算样本矩来估计总体参数。最大似然估计基于最大化样本数据的联合概率密度函数,通过寻找参数值使得样本数据出现的概率最大来估计参数。

公式

方法矩估计

方法矩估计基于以下公式:

  • 样本矩: M k = 1 n ∑ i = 1 n X i k M_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k Mk=n1i=1nXik
  • 总体矩: E ( X k ) = μ k E(X^k) = \mu_k E(Xk)=μk

通过设定样本矩等于总体矩,可以解出参数估计值。

最大似然估计

最大似然估计基于以下公式:

  • 似然函数: L ( θ ) = ∏ i = 1 n f ( X i ; θ ) L(\theta) = \prod_{i=1}^{n} f(X_i; \theta) L(θ)=i=1nf(Xi;θ)
  • 对数似然函数: ln ⁡ L ( θ ) = ∑ i = 1 n ln ⁡ f ( X i ; θ ) \ln L(\theta) = \sum_{i=1}^{n} \ln f(X_i; \theta) lnL(θ)=i=1nlnf(Xi;θ)

通过最大化对数似然函数来求解参数估计值。

示例题目

示例 1:正态分布参数估计

假设样本数据来自一个均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2的正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),我们要估计 μ \mu μ σ 2 \sigma^2 σ2

详细讲解

方法矩估计
  1. 样本矩计算:

    • 一阶样本矩: M 1 = 1 n ∑ i = 1 n X i M_1 = \frac{1}{n} \sum_{i=1}^{n} X_i M1=n1i=1nXi
    • 二阶样本矩: M 2 = 1 n ∑ i = 1 n X i 2 M_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 M2=n1i=1nXi2
  2. 总体矩关系:

    • 一阶总体矩: E ( X ) = μ E(X) = \mu E(X)=μ
    • 二阶总体矩: E ( X 2 ) = μ 2 + σ 2 E(X^2) = \mu^2 + \sigma^2 E(X2)=μ2+σ2
  3. 通过样本矩等于总体矩,得到:
    μ ^ = M 1 = 1 n ∑ i = 1 n X i \hat{\mu} = M_1 = \frac{1}{n} \sum_{i=1}^{n} X_i μ^=M1=n1i=1nXi
    σ ^ 2 = M 2 − μ ^ 2 \hat{\sigma}^2 = M_2 - \hat{\mu}^2 σ^2=M2μ^2

最大似然估计
  1. 似然函数:
    L ( μ , σ 2 ) = ∏ i = 1 n 1 2 π σ 2 exp ⁡ ( − ( X i − μ ) 2 2 σ 2 ) L(\mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(X_i - \mu)^2}{2\sigma^2} \right) L(μ,σ2)=i=1n2πσ2 1exp(2σ2(Xiμ)2)

  2. 对数似然函数:
    ln ⁡ L ( μ , σ 2 ) = − n 2 ln ⁡ ( 2 π σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( X i − μ ) 2 \ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2 lnL(μ,σ2)=2nln(2πσ2)2σ21i=1n(Xiμ)2

  3. μ \mu μ σ 2 \sigma^2 σ2求导并设为0,解得:
    μ ^ = 1 n ∑ i = 1 n X i \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i μ^=n1i=1nXi
    σ ^ 2 = 1 n ∑ i = 1 n ( X i − μ ^ ) 2 \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2 σ^2=n1i=1n(Xiμ^)2

Python代码求解

import numpy as np# 生成样本数据
np.random.seed(0)
data = np.random.normal(loc=5, scale=2, size=100)# 方法矩估计
mu_mom = np.mean(data)
sigma2_mom = np.mean(data**2) - mu_mom**2# 最大似然估计
mu_mle = np.mean(data)
sigma2_mle = np.var(data, ddof=0)print("方法矩估计:")
print(f"mu = {mu_mom}, sigma^2 = {sigma2_mom}")print("最大似然估计:")
print(f"mu = {mu_mle}, sigma^2 = {sigma2_mle}")

实际生活中的例子

在金融领域中,投资组合的收益通常被假设为正态分布。为了估计未来收益的均值和波动率,金融分析师可以使用历史收益数据来进行参数估计。通过方法矩估计或最大似然估计,可以得出投资组合的均值收益和方差,从而指导投资决策。

方法矩估计与最大似然估计的关系与优缺点

两种方法各有优缺点:

  • 方法矩估计通常计算简单,易于理解,但在有限样本量下估计量的效率较低。
  • 最大似然估计在大样本量下具有一致性和渐近正态性,估计量更有效,但计算复杂,尤其是对于复杂模型。

选择哪种方法更好取决于具体问题和数据特点。一般情况下,最大似然估计更受欢迎,因为它在大样本下具有良好的统计性质。

相关文章:

【数学】什么是方法矩估计?和最大似然估计是什么关系?

背景 方法矩估计(Method of Moments Estimation)和最大似然估计(Maximum Likelihood Estimation, MLE)是两种常用的参数估计方法。方法矩估计基于样本矩与总体矩的关系,通过样本数据计算样本矩来估计总体参数。最大似…...

C++初学者指南第一步---10.内存(基础)

C初学者指南第一步—10.内存(基础) 文章目录 C初学者指南第一步---10.内存(基础)1.内存模型1.1 纸上谈兵:C的抽象内存模型1.2 实践:内存的实际处理 2. 自动存储3.动态存储:std::vector3.1 动态内…...

扩散模型详细推导过程——编码与解码

符号表 符号含义 x ( i ) z 0 ( i ) \boldsymbol{x}^{(i)}\boldsymbol{z}_0^{(i)} x(i)z0(i)​第 i i i个训练数据,其为长度为 d d d的向量 z t ( i ) \boldsymbol{z}_t^{(i)} zt(i)​第 i i i个训练数据在第 t t t时刻的加噪版本 ϵ t ( i ) \boldsymbol{\epsilo…...

js如何实现开屏弹窗

开屏弹窗是什么&#xff0c;其实就是第一次登录后进入页面给你的一种公告提示&#xff0c;此后再回到当前这个页面时弹窗是不会再出现的。也就是说这个弹窗只会出现一次。 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>…...

C#——文件读取Directory类详情

文件读取Directory类 Durectory提供了目录以及子目录进行创建移动和列举操作方法 Directory和Directorylnfo类(主要操作文件目录属性列如文件是否隐藏的 或者只读等这些属性) Directory对目录进行复制、移动、重命名、创建和删除等操作DirectoryInfo用于对目录属性执行操作 …...

Ruby on Rails Post项目设置网站初始界面

在构建了Ruby的Web服务器后&#xff0c;第三步就可以去掉框架的官方页面&#xff0c;设置自己的网页初始页了。 Linux系统安装Ruby语言-CSDN博客 、在Ubuntu中创建Ruby on Rails项目并搭建数据库-CSDN博客、 Ruby语言建立Web服务器-CSDN博客 了解Ruby onRails项目中的主要文件…...

03-QTWebEngine中使用qtvirtualkeyboard

qt提供了 virtualKeyboard 虚拟键盘模块&#xff0c;只需要在在main函数中最开始加入这样一句就可以了 qputenv("QT_IM_MODULE", QByteArray("qtvirtualkeyboard")); 但是在使用的时候遇到了一些问题&#xff1a; 1、中文输入的时候没有输入提示 Qvirt…...

leetcode3无重复字符的最长字串(重点讲滑动窗口)

本文主要讲解无重复字符的最长字串的要点与细节&#xff0c;根据步骤一步步走更方便理解 c与java代码如下&#xff0c;末尾 具体要点&#xff1a; 1. 区分一下子串和子序列 子串&#xff1a;要求元素在母串中是连续地出现 子序列&#xff1a;不要求连续 2. 题目中有两个核心…...

Gobject tutorial 八

The GObject base class Object memory management Gobject的内存管理相关的API很复杂&#xff0c;但其目标是提供一个基于引用计数的灵活的内存管理模式。 下面我们来介绍一下&#xff0c;与管理引用计数相关的函数。 Reference Count 函数g_object_ref和g_object_unref的…...

DDMA信号处理以及数据处理的流程---cfar检测

Hello,大家好,我是Xiaojie,好久不见,欢迎大家能够和Xiaojie一起学习毫米波雷达知识,Xiaojie准备连载一个系列的文章—DDMA信号处理以及数据处理的流程,本系列文章将从目标生成、信号仿真、测距、测速、cfar检测、测角、目标聚类、目标跟踪这几个模块逐步介绍,这个系列的…...

【机器学习】从理论到实践:决策树算法在机器学习中的应用与实现

&#x1f4dd;个人主页&#xff1a;哈__ 期待您的关注 目录 &#x1f4d5;引言 ⛓决策树的基本原理 1. 决策树的结构 2. 信息增益 熵的计算公式 信息增益的计算公式 3. 基尼指数 4. 决策树的构建 &#x1f916;决策树的代码实现 1. 数据准备 2. 决策树模型训练 3.…...

Zookeeper 集群节点故障剔除、切换、恢复原理

Zookeeper 集群节点故障剔除、切换、恢复原理 zookeeper 集群节点故障时,如何剔除节点,如果为领导节点如何处理,如何进行故障恢 复的,实现原理? 在 Zookeeper 集群中,当节点故障时,集群需要自动剔除故障节点并进行故障恢复,确保集群的高 可用性和一致性。具体来说,…...

解决帝国cms栏目管理拼音乱码的问题

帝国CMS7.5版本utf-8版网站后台增加栏目生成乱码的问题怎么解决 1、需要改一个函数&#xff0c;并且增加一个处理文件&#xff0c;方法如下&#xff1a; 修改e/class/connect.php文件&#xff0c;找到ReturnPinyinFun函数&#xff0c;如未修改文件在4533-4547行&#xff0c;将…...

Git快速入门

一 快速使用 1.1 初始化 什么是版本库呢&#xff1f;版本库又名仓库&#xff0c;可以简单理解成一个目录&#xff0c;这个目录里面的所有文件都可以被Git管理起来&#xff0c;每个文件的修改、删除&#xff0c;Git都能跟踪&#xff0c;以便任何时刻都可以追踪历史&#xff0…...

【18.0】JavaScript---事件案例

【18.0】JavaScript—事件案例 【一】开关灯事件 【介绍】设置一个按钮&#xff0c;按下按钮触发事件&#xff0c;来回切换圆形图片的颜色 【分析】 图片设置&#xff1a;设置成圆形的图片背景颜色&#xff1a;设置红绿两个颜色&#xff0c;来回切换按钮设置&#xff1a;点击…...

推荐系统三十六式学习笔记:原理篇.矩阵分解12|如果关注排序效果,那么这个模型可以帮到你

目录 矩阵分解的不足贝叶斯个性化排序AUC构造样本目标函数训练方法 总结 矩阵分解在推荐系统中的地位非常崇高。它既有协同过滤的血统&#xff0c;又有机器学习的基因&#xff0c;可以说是非常优秀了&#xff1b;但即便如此&#xff0c;传统的矩阵分解无论是在处理显式反馈&…...

Kafka之ISR机制的理解

文章目录 Kafka的基本概念什么是ISRISR的维护机制ISR的作用ISR相关配置参数同步过程示例代码总结 Kafka中的ISR&#xff08;In-Sync Replicas同步副本&#xff09;机制是确保数据高可用性和一致性的核心组件。 Kafka的基本概念 在Kafka中&#xff0c;数据被组织成主题&#xf…...

如何设计一个点赞系统

首先我们定义出一个点赞系统需要对外提供哪些接口&#xff1a; 1.用户对特定的消息进行点赞&#xff1b; 2.用户查看自己发布的某条消息点赞数量以及被哪些人赞过&#xff1b; 3.用户查看自己给哪些消息点赞过&#xff1b; 这里假设每条消息都有一个message_id, 每一个用户都…...

对象存储测试工具-s3cmd

一、环境安装 官网&#xff1a;https://s3tools.org/s3cmd 下载安装包&#xff1a;https://s3tools.org/download GitHub&#xff1a;https://github.com/s3tools/s3cmd/releases 本文安装包&#xff1a;https://github.com/s3tools/s3cmd/releases/download/v2.0.2/s3cmd-2.0…...

OpenCV--图像色彩空间及转换

图像色彩空间及转换 python代码和笔记 python代码和笔记 import cv2 色彩空间&#xff0c;基础&#xff1a;RGB或BGR OpenCV中&#xff1a; 一、HSV(HSB)&#xff1a;用的最多&#xff0c; Hue&#xff1a;色相-色彩(0-360)&#xff0c;红色&#xff1a;0&#xff0c;绿色&…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境&#xff1a; 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境&#xff1a; virtualenv myenv 3、激活虚拟环境&#xff08;激活环境可以在当前环境下安装包&#xff09; source myenv/bin/activate 此时&#xff0c;终端…...