爬虫经典案例之爬取豆瓣电影Top250(方法二)
在上一篇文章的基础上,改进了代码质量,增加了多个正则表达式匹配,但同事也增加了程序执行的耗时。
from bs4 import BeautifulSoup
import requests
import time
import re
from random import randint
import pandas as pdurl_list = ['https://movie.douban.com/top250']
base_url = 'https://movie.douban.com/top250?start={start}'
for start in range(25, 251, 25):url_list.append(base_url.format(start=start))headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 Edg/124.0.0.0'}
movie_info = []def parse_info(info):# 尝试第一个正则表达式pattern1 = re.compile(r"导演: (.*?)\s*/?\s*主演: (.*?)\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")match1 = re.search(pattern1, info)if match1:director = match1.group(1).strip()actors = match1.group(2).strip()year = match1.group(3).strip()countries = match1.group(4).strip().split(' ')genres = match1.group(5).strip().split(' ')return director, actors, year, countries, genres# 尝试第二个正则表达式pattern2 = re.compile(r"导演: (.*?)\s*/?\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")match2 = re.search(pattern2, info)if match2:director = match2.group(1).strip()actors = ""year = match2.group(2).strip()countries = match2.group(3).strip().split(' ')genres = match2.group(4).strip().split(' ')return director, actors, year, countries, genres# 尝试第三个正则表达式pattern3 = re.compile(r"导演: (.*?)\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")match3 = re.search(pattern3, info)if match3:director = match3.group(1).strip()actors = ""year = match3.group(2).strip()countries = match3.group(3).strip().split(' ')genres = match3.group(4).strip().split(' ')return director, actors, year, countries, genres# 尝试第四个正则表达式 (处理有多个年份的情况)pattern4 = re.compile(r"导演: (.*?)\s*主演: (.*?)\s*(.*?)\s*/\s*(.*?)\s*/\s*(.*)")match4 = re.search(pattern4, info)if match4:director = match4.group(1).strip()actors = match4.group(2).strip()year = match4.group(3).strip()countries = match4.group(4).strip().split(' ')genres = match4.group(5).strip().split(' ')return director, actors, year, countries, genres# 如果没有匹配,返回空值return "", "", "", [], []for url in url_list:time.sleep(randint(1, 3))response = requests.get(url, headers=headers)soup = BeautifulSoup(response.text, 'html.parser')movie_items = soup.find_all('div', class_='item')for movie in movie_items:# 获取排名rank = movie.find('em').text.strip()# 获取电影标题title = movie.find('span', class_='title').text.strip()# 获取电影导演、演员、年份、上映地区等信息info = movie.find('div', class_='bd').find('p').text.strip()# 解析 info 字符串director, actors, year, countries, genres = parse_info(info)# 打印未匹配到的 infoif director == "" and actors == "" and year == "":print(f"未匹配到的info: {info}")# 获取评分信息rating_num = movie.find('span', class_='rating_num').text.strip()# 获取评价人数信息rate_people_num = movie.find('div', class_='star').find_all('span')[3].text.strip()# 将信息进行汇总mock_data = {'排名': rank,'电影名称': title,'导演': director,'演员': actors,'上映年份': year,'上映地区': countries,'电影类型': genres,'评分': rating_num,'投票人数': rate_people_num}movie_info.append(mock_data)df = pd.DataFrame(movie_info,columns=['排名', '电影名称', '导演', '演员', '上映年份', '上映地区', '电影类型', '评分', '投票人数'])
excel_path = 'movie_info.xlsx'
df.to_excel(excel_path, index=False)
相关文章:
![](https://www.ngui.cc/images/no-images.jpg)
爬虫经典案例之爬取豆瓣电影Top250(方法二)
在上一篇文章的基础上,改进了代码质量,增加了多个正则表达式匹配,但同事也增加了程序执行的耗时。 from bs4 import BeautifulSoup import requests import time import re from random import randint import pandas as pdurl_list [https…...
![](https://www.ngui.cc/images/no-images.jpg)
如何优化React应用的性能?
优化React应用的性能是一个多方面的过程,涉及到代码的编写、组件的设计、资源的管理等多个层面。以下是一些常见的性能优化策略: 避免不必要的渲染: 使用React.memo、useMemo和useCallback来避免组件或其子组件不必要的重新渲染。 代码分割: 使用React.…...
![](https://img-blog.csdnimg.cn/direct/94543b358b004299983d8a794bd6793a.png)
css文字镂空加描边
css文字镂空加描边 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>文字镂空</title><style>/* 公用样式 */html,body{width: 100%;height: 100%;position: relative;}/* html{overflow-y: scroll;} */*{margi…...
![](https://www.ngui.cc/images/no-images.jpg)
python数据分析与可视化
Python 在数据分析和可视化方面有着广泛的应用,并且拥有众多强大的库和工具来支持这些任务。以下是一些常用的 Python 库和它们的主要用途: 数据分析 Pandas: Pandas 是 Python 中用于数据处理和分析的主要库。 它提供了数据框(DataFrame)和序列(Series)两种数据结构…...
![](https://www.ngui.cc/images/no-images.jpg)
webkit 的介绍
WebKit 是一个开源的网页浏览器引擎,它是 Safari 浏览器和许多其他应用程序的基础。WebKit 最初由苹果公司开发,并在2005年作为开源项目发布。WebKit 的核心组件包括 WebCore 和 JavaScriptCore。以下是 WebKit 的详细介绍: ### WebKit 的主…...
![](https://img-blog.csdnimg.cn/direct/ecf1383b97fc4f768583317748e131d8.jpeg)
make与makefile
目录 一、make的默认目标文件与自动推导 二、不能连续make的原因 执行原理 touch .PHONY伪目标 make指令不回显 makefile多文件管理 简写依赖方法 三、回车与换行 四、缓冲区 一、make的默认目标文件与自动推导 假设这是一个makefile文件,make的时候默认生…...
![](https://img-blog.csdnimg.cn/direct/c95254c74bd04e6bb4dd75d8a8335e26.png)
深度神经网络一
文章目录 深度神经网络 (DNN)1. 概述2. 基本概念3. 网络结构 深度神经网络的层次结构详细讲解1. 输入层(Input Layer)2. 隐藏层(Hidden Layers)3. 输出层(Output Layer)整体流程深度神经网络的优点深度神经…...
![](https://img-blog.csdnimg.cn/img_convert/600dd09771bbf79e8fa2f1b062dc65e2.png)
Pnpm:包管理的新星,如何颠覆 Npm 和 Yarn
在探索现代 JavaScript 生态系统时,我们常常会遇到新兴技术的快速迭代和改进。其中,包管理工具的发展尤为重要,因为它们直接影响开发效率和项目性能。最近,pnpm 作为一种新的包管理工具引起了广泛关注。它不仅挑战了传统工具如 np…...
![](https://www.ngui.cc/images/no-images.jpg)
汽车IVI中控开发入门及进阶(三十二):i.MX linux开发之Yocto
前言: 对于NXP的i.mx,如果基于linux开发,需要熟悉以下文档: IMX_YOCTO_PROJECT_USERS_GUIDE.pdf IMX_LINUX_USERS_GUIDE.pdf IMX_GRAPHICS_USERS_GUIDE.pdf 如果基于android开发,需要熟悉一下文档: Android_Auto_Quick_Start_Guide.pdf ANDROID_USERS_GUIDE.pdf …...
![](https://www.ngui.cc/images/no-images.jpg)
tessy 编译报错:单元测试时,普通桩函数内容相关异常场景
目录 1,失败现象 2,原因分析 1,失败现象 1,在 step 桩函数正常的情况下报错。 2,测试代码执行的数据流 和 step 桩函数内容不一致。 2,原因分析 桩函数分为 test object, test case, test step 三种类别。…...
![](https://www.ngui.cc/images/no-images.jpg)
计算机专业是否仍是“万金油”
作为一名即将参加高考的学生,我站在人生的分岔路口上,面临着选择大学专业的重大抉择。在这个关键节点,计算机相关专业是否仍是炙手可热的选择? 首先,从行业的角度来看,计算机相关专业确实在近年来持续火…...
![](https://img-blog.csdnimg.cn/img_convert/621ba0e6632b48d27fba0c3a452cdc94.png)
雷池社区版自动SSL
正常安装雷池,并配置站点,暂时不配置ssl 不使用雷池自带的证书申请。 安装(acme.sh),使用域名验证方式生成证书 先安装git yum install git 或者 apt-get install git 安装完成后使用 git clone https://gitee.com/n…...
![](https://www.ngui.cc/images/no-images.jpg)
怎样减少徐州服务器租用的成本?
服务器租用的出现,十分便于网络行业的发展,但是随着服务器租用的广泛应用,整体还是有着一定的成本的吗,不同的服务器类型在价格方面也是不同的,那么企业在选择服务器租用后,怎样才能减少服务器租用的成本呢…...
![](https://img-blog.csdnimg.cn/img_convert/79be6250fa9252d5eafb8f9d061964b4.png)
【性能优化】表分桶实践最佳案例
分桶背景 随着企业的数据不断增长,数据的分布和访问模式变得越来越复杂。我们前面介绍了如何通过对表进行分区来提高查询效率,但对于某些特定的查询模式,特别是需要频繁地进行数据联接查或取样的场景,仍然可能面临性能瓶颈。此外…...
![](https://www.ngui.cc/images/no-images.jpg)
数据仓库的挑战
建设数据仓库是一个复杂且资源密集的过程,需要考虑多个方面。以下是建设数据仓库时常见的挑战及其详细解释: 1. 数据集成 挑战: 数据来源多样:数据来自不同的系统、数据库、文件格式(如CSV、JSON、XML)、…...
![](https://img-blog.csdnimg.cn/direct/09d47f151a404209b846d31aacef9cf0.png)
基于ResNet-18的简单分类(新手,而且网络效果不咋滴,就是学个流程)
引言 先看问题: 我手边有一数据集,然后我想分分类!~~ 咳咳,最近刚做了一个:训练集有1143张,分为5类,里面图片是打乱的。测试集有248张,想把它分分类看看咋样。 再看一下效果: …...
![](https://img-blog.csdnimg.cn/direct/80b0049e0dea4d0e9e7d773898fef7b5.png)
自动化测试:Autorunner的使用
自动化测试:Autorunner的使用 一、实验目的 1、掌握自动化测试脚本的概念。 2、初步掌握Autorunner的使用 二、Autorunner的简单使用 autoRunner使用方法 新建项目 a) 在项目管理器空白区域,右键鼠标,选择新建项目 b) 输入项目名后,点击[确定]. 在初次打开aut…...
![](https://img-blog.csdnimg.cn/direct/630388ad1a25426aba045f306e45fba7.png)
时序预测 | Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测; 2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据&…...
![](https://www.ngui.cc/images/no-images.jpg)
软考 系统架构设计师系列知识点之杂项集萃(42)
接前一篇文章:软考 系统架构设计师系列知识点之杂项集萃(41) 第67题 Windows操作系统在图形界面处理方面采用的核心架构风格是( )风格。Java语言宣传的“一次编写,到处运行”的特性,从架构风格…...
![](https://img-blog.csdnimg.cn/direct/61e5ed70b1764bfc825e964022af8ab8.png)
FastBoot刷机获取root权限(Magisk)
1.首先要下载ADB、Fastboot等工具。 1.ADB、Fastboot工具 https://developer.android.com/studio/releases/platform-tools 2.安装FastBoot的USB驱动 https://developer.android.com/studio/run/oem-usb 2.下载对应的镜像 https://developers.google.com/android/images?…...
![](https://www.ngui.cc/images/no-images.jpg)
信息检索(43):SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking 摘要1 引言2 相关工作3 方法3.1 SparTerm3.2 SPLADE:稀疏词汇和扩展模型 4 实验5 结论 发布时间(2021) 标题:稀疏词汇 扩展模型 摘要 稀疏的优点…...
![](https://www.ngui.cc/images/no-images.jpg)
DockerHub 镜像加速
Docker Hub 作为目前全球最大的容器镜像仓库,为开发者提供了丰富的资源。Docker Hub 是目前最大的容器镜像社区,DokcerHub的不能使用,导致在docker下pull镜像无法下载,安装kubernetes镜像也受到影响,下面请看解决方式。 1.加速原理 Docker下载加速的原理…...
![](https://www.ngui.cc/images/no-images.jpg)
Oracle 迁移 Mysql
-- Oracle->MySQL -- 使用时改一下where条件的owner和table_name -- 字段数据类型映射时会将Oracle中的浮点NUMBER转换为decimal(65,8)定点数 -- 可以识别主键约束、非空约束,但无法识别外键约束、唯一约束、自定义check -- 对于Oracle字符串长度为4000的&#x…...
![](https://www.ngui.cc/images/no-images.jpg)
vue3父子组件通信
一,父传子——defineProps 方法: 在父组件的模板中使用子组件标签,并且给标签自定义属性和属性名,即通过v-bind绑定数值,而后传给子组件;子组件则通过defineProps接收使用。 父组件: <tem…...
![](https://www.ngui.cc/images/no-images.jpg)
CSS中使用应用在伪元素中的计数器属性counter-increment
在CSS中,counter-increment 是一个用于递增计数器值的属性。它通常与 counter-reset 和 content 属性一起使用,以在文档中的特定位置(如列表项、标题等)插入自动生成的数字或符号。 counter-increment 基本用法: 使…...
![](https://img-blog.csdnimg.cn/direct/30a0e3b86245445aae55867cabae0b46.png)
【SkiaSharp绘图08】SKPaint方法:自动换行、是否乱码、字符偏移、边界、截距、文本轮廓、测量文本
文章目录 SKPaint方法BreakText 计算指定宽度内可绘制的字符个数ContainsGlyphs字体是否包含文本字符(是否会乱码)GetGlyphOffsets 字符偏移量GetGlyphPositions 偏移坐标GetGlyphWidths 每个字符的宽度与边界GetHorizontalTextIntercepts 轮廓截距GetPositionedTextIntercepts…...
![](https://www.ngui.cc/images/no-images.jpg)
深入理解Servlet Filter及其限流实践
引言 在Java Servlet技术中,Filter是一个拦截器,它允许开发者在请求到达目标资源之前或响应发送给客户端之后,对请求或响应进行拦截和处理。这种机制为实现诸如身份验证、日志记录、请求修改等功能提供了极大的灵活性。 Filter基础 Filter…...
![](https://www.ngui.cc/images/no-images.jpg)
使用cv2对视频指定区域进行去噪
视频去噪其实和图象一样,只是需要现将视频截成图片,在对图片进行去噪,将去噪的图片在合成视频就行。可以利用cv2.imread()、imwrite()等轻松实现。 去噪步骤 1、视频逐帧读成图片 2、图片指定区域批量去噪 2、去噪后的图片写入视频 1、视频逐…...
![](https://www.ngui.cc/images/no-images.jpg)
AI在创造还是毁掉音乐?
AI对音乐产业的影响是复杂而多维的,既有创造性的贡献也存在潜在的挑战。我们可以从以下几个角度来分析这个问题: ### 创造性贡献 1. **音乐创作**:AI可以帮助音乐家创作新的旋律和和声,甚至生成完整的音乐作品。例如,…...
![](https://www.ngui.cc/images/no-images.jpg)
【2023年全国青少年信息素养大赛智能算法挑战赛复赛真题卷】
目录 2023全国青少年信息素养大赛智能算法挑战赛初中组复赛真题 2023全国⻘少年信息素养⼤赛智能算法挑战复赛⼩学组真题 2023全国青少年信息素养大赛智能算法挑战赛初中组复赛真题 1. 修复机器人的对话词库错误 【题目描述】 基于人工智能技术的智能陪伴机器人的语言词库被…...
![](/images/no-images.jpg)
如何做网站运营/北京学电脑的培训机构
docker run -t -i ubuntu:14.04 /bin/bash 新建并启动容器 -t 让Docker分配一个伪终端(pseudo-tty)并绑定到容器的标准输入上 -i 让容器的标准输入保持打开 -d 让容器在后台以守护态(Deamonized)形式运行 -v 创建一…...
![](/images/no-images.jpg)
提高网站排名/国内比百度好的搜索引擎
文章目录一、Python简介1.Python定义2.Python特点3.Python编译和运行过程4.Python的应用场景二、下载安装1.Windows2.Linux三、语法介绍1.代码缩进2.函数六、网络爬虫七、桌面应用开发一、Python简介 1.Python定义 Python是一种简单易学并且结合了解释性、编译性、互动性和面…...
![](/images/no-images.jpg)
西安高端网站设计公司/青岛关键词排名哪家好
1. DataTable.Select(),数据筛选,有四个重载,不带参数的重载Select()的意思是获取所有的行数组,并按主键进行排序。 2. DataTable.Clone(),复制表结构,也就是对象的深拷贝,在c#里面,有浅拷贝和…...
![](/images/no-images.jpg)
网站建设的过程包括几个阶段/营销策划与运营公司
一、mysql数据库日常操作。 1.启动mysql:/etc/init.d/mysql start (前面为mysql的安装路径) 2.重启mysql: /etc/init.d/mysql restart (前面为mysql的安装路径) 3.关闭mysql: /etc/init.d/mysql stop(前面为mysql的安装路径) …...
![](https://images2015.cnblogs.com/blog/799867/201603/799867-20160308161709210-1423043524.png)
宝安网站设计制作/怎样优化网站
1、频道管理中,URL配置,增加一个参数person_id 2、在photo_list.html模板页中,添加以下代码 <!--C#代码--><%csharp%>string strwhere"status0 ";if(DTRequest.GetQueryString("person_id")!null){string pe…...
![](/images/no-images.jpg)
wordpress主题报错/网站代发外链
PHP 安全三板斧:过滤、验证和转义之过滤篇 & Laravel底层SQL注入规避由 学院君 创建于4年前, 最后更新于 1年前版本号 #328413 views19 likes0 collects我们在开发应用时,一般有个约定:不要信任任何来自不受自己控制的数据源中的数据。例…...