如何系统学习机器学习?
我不是计算机专业,第一次接触机器学习还是在研一的时候,当时是看到机器学习可以做号码识别,就觉得好厉害,想学这个。
首次了解到Python这门语言,知道了机器学习可以做什么后,就感觉打开了新世界一样。再后来也就开始学习Python、学习机器学习。
到现在也积累了一些经验,总结了一下分享给大家作学习参考。
机器学习基础信息
概念
我们人在面对一个新的问题的时候,会想到用我们已有经验总结出来对的规律解决这个问题。而机器学习要做的事情也差不多,在面对一个新问题的时候,机器从已有的历史数据总结出一个规律,套用在新问题上,进而解决这个问题。
机器学习和人学习的过程用下面这个图片表达:
机器学习定义:“A computer program is said to learn from experience E with respect to some class of tasksT and performance measureP if its performance at tasks inT, as measured by P, improves with experience E ”
翻译过来是:“一个电脑程序要完成任务(T),如果电脑获取的关于T的经验(E)越多就表现(P)得越好,那么我们就可以说这个程序‘学习’了关于T的经验。”
简单理解为是机器学习从历史数据中提取规律(特征),总结训练出模型,并对新数据做出预测。
机器学习与人工智能、深度学习的关系
三者之间的关系是逐层递减的,可以用下面这个图片来理解:
机器学习应用方向
机器学习的应用面很广,在我们的生活中已经有很多方面都有相关的应用。比如:**聊天机器人、人脸识别、垃圾邮箱拦截、语言翻译、计算机视觉、自然语言处理、数据挖掘**等方面。
除了这些应用,还有现在出现的各种大模型也多是基于机器学习框架生成的。例如现在火遍全球的大模型,OpenAI表示大模型使用了一种名为“利用人类反馈强化学习”(RLHF)的机器学习技术进行训练的。
大模型作为当前全球热门技术,会给我们的生活带什么样的影响?想要在这波红利中给自己带来更多收益,要学习哪些技能?推荐大家看看在线推出的**【程序员的AI大模型进阶之旅】公开课**,行业大佬带你了解最新技术,提升自己认知。这些公开课还推出两大福利:AI 大模型资料包;无需翻墙的好用AI工具名称和网址,帮助你快人一步。微信扫描下方二维码即可免费领取:
机器学习学习内容
机器学习三要素
三要素即为数据、模型、算法。三者贯穿机器学习整个过程,缺一不可。
机器学习是由数据驱动的,这些数据都是收集到的客观可量化数据;模型则是机器学习中采用什么样的模型或者说方法进行预测和拟合;算法可以理解为一个优化的过程,最终确定最优模型。
机器学习分类
机器学习可以分为监督学习、无监督学习、强化学习。
监督学习
通过有数据标签的数据进行训练,一般可以有回归和分类两类方式。
监督学习的算法主要有:线性回归、逻辑回归、支持向量机、决策树、随机森林、K-近邻、朴素贝叶斯、AdaBoost、梯度提升树、神经网络。
无监督学习
没有数据标签对的数据进行训练,这类方法的目标是找到数据集底层联系,有聚类和关联两类。
无监督学习的算法主要有:K-均值聚类、层次聚类、DBSCAN、主成分分析、独立成分分析、t-SNE。
强化学习
强化学习通过智能体与环境的交互和反馈,学习到最优的策略来最优化奖励。
强化学习的算法主要有:Q-学习、SARSA、深度Q网络、策略梯度方法、Actor-Critic 方法、Proximal Policy Optimization。
机器学习流程
1.收集数据
2.数据预处理:主要包括缺失值处理、异常值处理、重复值处理等。
3.训练模型:对经过预处理后的数据进行模型训练,结合自己的目的(分类、回归、聚类等)选择合适的训练方式。
4.模型评估:通过训练好的模型对数据测试集进行测试,通过评估指标来评价训练模型的好坏,一般评估指标有准确率、查准率、查全率、均方根误差、ROC 和 AUC等。
5.优化:这个也可以叫做调参过程,通过找到最好的参数可以让模型的性能提高一大截,有传统的手工调参、网格搜索、随机搜索、贝叶斯搜索等方法。
6.预测:最后一步,这是对新数据或新样本的推断或预测。
机器学习需要那些知识
学好机器学习需要有一定的数学基础和计算机编程基础。总结一下,学机器学习需要下面这几方面知识:
数学基础:机器学习中很多方面都设计到了数学知识,较好的数学知识可以在理解和应用机器学习中发挥积极的作用,一般包括线性代数、微积分、概率论和统计学等。
编程基础:这个是肯定的了,只有一定的编程基础,才能看得懂、用得了、写得好算法。现在常说的是Python,此外C++或java也可以。
了解数据结合和算法:算法涉及到了很多数据结构,如图、树、排序等,掌握这些数据结构和算法很重要。
基础机器学习算法知识:前文也说了机器学习中有很多算法,因此也需要掌握一些基础算法,例如支持向量机、神经网络、决策树、逻辑回归等。
此外还有一些知识也需要注意,比如**特征提取、模型评估及调优**等。
优质资源推荐
这儿我总结了很多优质资源,都是大家在学习机器学习的时候最常用的、效果最好的内容。
书籍
《机器学习》
又叫西瓜书,作者:周志华。这本书可以作为机器学习的入门读物。基本上涵盖了机器学习基础知识的方方面面。每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。
《统计学习方法》
作者:李航。这本书也是机器学习的入门级读物,本书机器学习原理的解释、公式的推导非常非常详尽。全面系统地介绍了统计学习的主要方法,现在有第二版,分为监督学习和无监督学习两个部分。
《机器学习实战》
作者:Peter Harrington。在看完前面两本书后,再跟着本书里的代码进行学习和实操,效果会更好。书中也精心编排了很多实例,从实例入手,更能帮助大家理解机器学习中的各种名词。
其他资源
吴恩达 deeplearning.ai
林轩田 机器学习基石
吴恩达机器学习课程是很多人的入门机器学习的第一堂课。,之前的课程时间有点久了,可以看看2022年出的新版。
这个也是很多同学在学校的时候经常看到基础入门课。
李宏毅 机器学习课程
大多数同学反应,李宏毅讲的课程相对于吴恩达更能接受一些。
各Python库的官方文档
TensorFlow:https://www.tensorflow.org/tutorials/
pytorch:Welcome to PyTorch Tutorials — PyTorch Tutorials 2.0.1+cu117 documentation
scikit-learn:https://scikit-learn.org/stable/index.html
numpy:https://numpy.org/
pandas:http://pandas.pydata.org/pandas-docs/stable/
matplotlib:https://matplotlib.org/stable/tutorials/index.html
以上就是本次的分享,最后提醒大家一下,想要学好机器学习最重要的还是要实践。通过遇见问题、发现问题、解决问题不断地提高自己的能力。
相关文章:

如何系统学习机器学习?
我不是计算机专业,第一次接触机器学习还是在研一的时候,当时是看到机器学习可以做号码识别,就觉得好厉害,想学这个。 首次了解到Python这门语言,知道了机器学习可以做什么后,就感觉打开了新世界一样。再后来…...

Qt:1.杂谈
1.前端开发和Qt: 前端开发可以分为网页开发、移动端开发、桌面应用开发。Qt这个技术,是来开发电脑桌面应用程序的,也就是客户端程序的开发。属于比较经典的前端开发体系下。客户端开发的任务:编写和用户交互的界面或者应用程序。大…...

AI视频模型Sora核心功能以及应用场景
随着人工智能技术的飞速发展,AI在视频处理和生成领域的应用正变得越来越广泛。Sora,作为新一代AI视频模型,展示了前所未有的潜力和创新能力。本文将深入探讨Sora的功能、应用场景以及它所带来的革命性变化。 一、Sora的核心功能 1.1 视频生…...

面试-细聊synchronized
1.线程安全问题的主要诱因: 存在多条共享数据(临界资源) 存在多条线程共同操作这些共享数据 解决问题的根本方法: 同一时刻有且仅有一个线程在操作共享数据,其他线程必须等到该线程处理完数据后在对共享数据进行操作。 2.synchroized锁 分…...

AI降重新突破:chatgpt降重工具在学术论文中的应用与效果
论文降重一直是困扰各界毕业生的“拦路虎”,还不容易熬过修改的苦,又要迎来降重的痛。 其实想要给论文降重达标,我有一些独家秘诀。话不多说直接上干货! 1、同义词改写(针对整段整句重复) 这是最靠谱也是…...

Spring学习02-[Spring容器核心技术IOC学习]
Spring容器核心技术IOC学习 什么是bean?如何配置bean?Component方式bean配合配置类的方式import导入方式 什么是bean? 被Spring管理的对象就是bean,和普通对象的区别就是里面bean对象里面的属性也被注入了。 如何配置bean? Component方式、bean配合配置类的方式、import…...

2024上海CDIE 参展预告 | 一站式云原生数字化平台已成趋势
为什么企业需要进行数字化转型?大家都在讨论的数字化转型面临哪些困境?2024.6.25-26 CDIE数字化创新博览会现场,展位【A18】,期待与您相遇,共同探讨企业如何利用数字化技术驱动业务增长。 一、展会介绍——CDIE数字化…...

高考专业组 07组 08组 武汉大学
武汉大学的招生都什么废物点心,搜个专业组都没官方解释! 07组:理学,详见下表专业代码07xxxx,例如数学、物理、化学 08组:工学,详见下表专业代码08xxxx,例如机械、电子信息、自动化、…...

解析JavaScript中逻辑运算符和||的返回值机制
本文主要内容:了解逻辑运算符 &&(逻辑与)和 ||(逻辑或)的返回值。 在JavaScript中,逻辑运算符 &&(逻辑与)和 ||(逻辑或)的返回值可能并不总…...

Java中的数据结构与算法探秘
Java中的数据结构与算法探秘 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 引言 数据结构与算法是计算机科学的基础,对于Java程序员来说&#x…...

AST反混淆实战|嵌套的赋值语句通用还原处理
关注它,不迷路。 本文章中所有内容仅供学习交流,不可用于任何商业用途和非法用途,否则后果自负,如有侵权,请联系作者立即删除! 1.混淆代码 下面的这段代码是来自px3验证码核心混淆代码: function _u…...

Unity的ScrollView滚动视图复用
发现问题 在游戏开发中有一个常见的需求,就是需要在屏幕显示多个(多达上百)显示item,然后用户用手指滚动视图可以选择需要查看的item。 现在的情况是在100个data的时候,Unity引擎是直接创建出对应的100个显示item。 …...

详解Spring AOP(二)
目录 1.切点表达式 1.1execution表达式 1.2 annotation 1.2.1自定义注解MyAspect 1.2.3添加自定义注解 2.Sping AOP原理 2.1代理模式 2.1.1静态代理 2.1.2动态代理 2.1.3JDK动态代理 2.1.4CGLIB动态代理 3.总结 承接上文:详解Spring AOP(一&…...

sql-analysis
文章目录 痛点: 1、无法提前发现慢sql,可能恶化为慢sql的语句 2、线上出现慢sql后,无法快速止损 后果:一般是以响应时间来发现慢sql,这时候已经对业务产生了一定影响,这时候就要改代码重新发布上线或者改数…...

后台管理台字典localStorage缓存删除
localStorage里存放了如以下dictItems_开头的字典数据,localStorage缓存是没有过期时间的,需要手动删除。同时localStorage里还存有其他不需要删除的数据。 这里的方案是遍历localStorage,利用正则和所有key进行匹配,匹配到dict…...

计算机毕业设计PySpark+Hadoop招聘推荐系统 招聘大数据 招聘数据分析 招聘可视化 大数据毕业设计 大数据毕设
1. 管理端: 带有职位的增删改查功能,评论功能是针对新闻模块的,类似新闻大数据的实现 2. 网站端: python / java 协同过滤推荐算法 / 下载职位数据表收费1元每条 / 账户充值 / 短信验证码修改密码 / 身份证识别 / 多条件搜索 3.…...

.Net预定义的泛型委托
我们每次要使用一个委托前,都需要自定义这个委托类型,声明其参数和返回值,然后才能实例化委托类型的对象、最后调用委托对象。 为了简化这个过程,.Net预定义了Func<T>委托、Action<T>委托类型和Predicate<T>&a…...

Unity的Excel转表工具
该Excel工具主要由Python语言完成,版本为3.x 主要功能: 1.转换后的数据存储结构为二进制。 2.excel文件可以选择多种数据类型:int、float、string、一维(int、float、string)、二维int、Map(int/int、in…...

静态随机存储器(SRAM):高速缓存的奥秘
目录 基本的静态存储单元阵列 基本的SRAM逻辑结构 1. 概述 2. SRAM阵列 3. 行选择器(Row Decoder) 4. 列选择器(Column Decoder) 5. 读写电路 6. 控制电路 7. 工作过程 SRAM的读/写时序 SRAM 结构概述 读操作时序 读…...

Linux CentOS 7 服务器集群硬件常用查看命令
(一)查看内核:uname -a [rootcdh1 ~]# uname -a Linux cdh1.macro.com 3.10.0-1062.el7.x86_64 #1 SMP Wed Aug 7 18:08:02 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux(二)查看系统:cat /etc/redhat-releas…...

《Windows API每日一练》5.4 键盘消息和字符集
本节我们将通过实例来说明不同国家的语言、字符集和字体之间的差异,以及Windows系统是如何处理的。 本节必须掌握的知识点: 第31练:显示键盘消息 非英语键盘问题 字符集和字体 第32练:显示默认字体信息 第33练:创建逻…...

【uniapp】uniapp开发微信小程序入门教程
HBuilderx中uniapp开发微信小程序入门教程 一、 环境搭建 1. HBuilderx下载安装 HBuilderx下载安装地址 2. 微信开发者工具下载安装 微信开发者工地址具下载安装 二、创建uniapp项目 选择:文件>新建>项目>uni-app 输入项目名称>选择默认模板>…...

Python爬虫项目集:豆瓣电影排行榜top250
关于整理日常练习的一些爬虫小练习,可用作学习使用。 爬取项目以学习为主,尽可能使用更多的模块进行练习,而不是最优解。 爬虫概要 示例python 库爬取模块request解析模块BeautifulSoup存储类型list(方便存入数据库)…...

34-Openwrt uhttpd与rpcd
uhttpd作为一个简单的web服务器,其代码量并不多,而且组织结构比较清楚。和其它网络服务器差不多,其main函数进行一些初始化(首先parse config-file,然后parse argv),然后进入一个循环࿰…...

uni app 树状结构数据展示
树状数据展示,可以点击item 将点击数据给父组件 ,满足自己需求。不喜勿喷,很简单可以根据自己需求改哈,不要问,点赞收藏就好。其实可以和上一篇文章uni app 自定义 带popup弹窗的input组件-CSDN博客结合使用ÿ…...

KVM在线yum源部署-centos 7
一、虚拟化简介 虚拟化就是操作系统里嵌套操作系统,一台服务器买回来,可能只是用作一个http服务,资源不能充分利用,而虚拟化的诞生有效解决了这个问题,以硬件资源上使用虚拟化,实现单硬件多系统,充分挖掘硬件性能,节能增效。同时通过多年的改进发展,虚拟化进化成云服务…...

TSF的服务发现与Consul有何区别?
TSF(腾讯服务框架)和Consul都是用于服务发现的工具,但它们在设计理念、功能特性、集成方式等方面存在一些区别。 ### 设计理念和目标 **Consul** 是一个开源的工具,用于服务发现、配置和分段。它提供了一种简单的方式来注册和发现服务,以及健康检查和键值存储功能。Consul…...

kotlin集合框架
1、集合框架的接口类型对比 2、不可变和可变List fun main() {// 不可变List - 不能删除或添加元素val intList: List<Int> listOf(1,2,3)intList.forEach{println(it) // 1 2 3}println("")// 可变List - 可以删除或添加元素val mutableList mutableListO…...

服务器(Linux系统的使用)——自学习梳理
root表示用户名 后是机器的名字 ~表示文件夹,刚上来是默认的用户目录 ls -a 可以显示出隐藏的文件 蓝色的表示文件夹 白色的是文件 ll -a 查看详细信息 total表示所占磁盘总大小 一般以KB为单位 d开头表示文件夹 -代表文件 后面得三组rwx分别对应管理员用户-组…...

竞赛选题 python+opencv+深度学习实现二维码识别
0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 pythonopencv深度学习实现二维码识别 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:3分 该项目较为新颖&…...