当前位置: 首页 > news >正文

网站建设的意义和目的/运营推广怎么做

网站建设的意义和目的,运营推广怎么做,多用户商城系统在哪儿,网站建设推广分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测 目录 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测,…

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

目录

    • 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5

基本介绍

Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测,输入多个特征,分四类。
XGBoost的核心算法思想基本就是:不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数f(x),去拟合上次预测的残差。当我们训练完成得到k棵树,我们要预测一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数。最后只需要将每棵树对应的分数加起来就是该样本的预测值。

程序设计

  • 完整程序和数据下载:Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);t_train = T_train;
t_test  = T_test;%%  数据转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';%%  参数设置
fun = @getObjValue;                 % 目标函数
dim = 3;                            % 优化参数个数
lb  = [001, 001, 0.01];             % 优化参数目标下限(最大迭代次数,深度,学习率)
ub  = [ 50, 012,  0.1];             % 优化参数目标上限(最大迭代次数,深度,学习率)

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关文章:

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测 目录 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测,…...

说说 golang 中的接口和反射

1、接口 1.1 类型 Golang 中的接口是一组方法的签名,是实现多态和反射的基础。 type 接口名 interface {method1(参数列表) 返回值列表method2(参数列表) 返回值列表 }不同于 Java 语言,使用 implements 关键字显示的实现接口。Golang 接口的实现都是…...

小程序注册

【 一 】小程序注册 微信公众平台 https://mp.weixin.qq.com/ https://mp.weixin.qq.com/注册 邮箱激活 小程序账户注册 微信小程序配置 微信小程序开发流程 添加项目成员 【 二 】云服务 lass 基础设施服务(组装机) 你买了一大堆的电脑配件&#x…...

工作记录2

1. 要实现y轴超出部分滚动的效果&#xff0c;可以这样写 <div style"max-height: 384px; overflow-y: auto;"> </div> 2. 当后端接口还没好的时候&#xff0c;可以自己模拟一下接口返回的数据 export const getCommodityDetail (id) > Promise.re…...

linux挂载硬盘(解决linux不显示硬盘问题)

目录 1.查看系统有几块硬盘2.查看挂载情况3.格式化硬盘4.创建挂载目录用于挂载硬盘5.将硬盘挂载到指定的挂载目录6.随系统自启动挂载查看配置文件&#xff0c;看是否已经把这条命令加入配置 帮同门解决挂载失败问题记录 参考视频&#xff1a;只要6步&#xff01;Linux系统下挂载…...

运输标签扫描仪可简化运输和接收任务

Dynamic Web TWAIN 是一个专为Web应用程序设计的TWAIN扫描识别控件。你只需在TWAIN接口写几行代码&#xff0c;就可以用兼容TWAIN的扫描仪扫描文档或从数码相机/采集卡中获取图像。然后用户可以编辑图像并将图像保存为多种格式&#xff0c;用户可保存图像到远程数据库或者Share…...

Stable Diffusion 3 大模型文生图实践

windows教程2024年最新Stable Diffusion本地化部署详细攻略&#xff0c;手把手教程&#xff08;建议收藏!!)_stable diffusion 本地部署-CSDN博客 linux本地安装教程 1.前期准备工作 1&#xff09;创建conda环境 conda create --name stable3 python3.10 2&#xff09;下…...

Linux grep技巧 删除含有指定关键词的行,创建新文件

一. 需求 ⏹有如下文件&#xff0c;现要求 删除含有xuecheng关键字的行删除含有192.168.1.1关键字的行也就是说&#xff0c;最终只会留下127.0.0.1 license.sublimehq.com 127.0.0.1 www.xuecheng.com 127.0.0.1 img.xuecheng.com 192.168.1.1 www.test.com 127.0.0.1 video…...

ChatMoney还能写剧本杀?

本文由 ChatMoney团队出品 近年来&#xff0c;剧本杀作为一种新兴社交游戏&#xff0c;收到了越来越多人的喜爱&#xff0c;它不仅需要玩家们发挥自身演技&#xff0c;还需运用逻辑思维推理&#xff0c;分析所获得的线索&#xff0c;找出案件真凶。然而你是否想过&#xff0c;你…...

优化系统小工具

一款利用VB6编写的系统优化小工具&#xff0c;系统优化、桌面优化、清理垃圾、查找文件等功能。 下载:https://download.csdn.net/download/ty5858/89432367...

调幅信号AM的原理与matlab实现

平台&#xff1a;matlab r2021b 本文知识内容摘自《软件无线电原理和应用》 调幅就是使载波的振幅随调制信号的变化规律而变化。用音频信号进行调幅时&#xff0c;其数学表达式可以写为: 式中&#xff0c;为调制音频信号&#xff0c;为调制指数&#xff0c;它的范围在(0&…...

[MySql]两阶段提交

文章目录 什么是binlog使用binlog进行恢复的流程 什么是redolog缓冲池redologredolog结构 两阶段提交 什么是binlog binlog是二进制格式的文件&#xff0c;用于记录用户对数据库的修改&#xff0c;可以作用于主从复制过程中数据同步以及基于时间点的恢复&#xff08;PITR&…...

掌握rpc、grpc并探究内在本质

文章目录 rpc是什么&#xff1f;又如何实现服务通信&#xff1f;理解rpcRPC的通信过程通信协议的选择小结RPC VS Restful net_rpc实践案例net/rpc包介绍创建服务端创建client 看看net_rpc的通信调度实现的内部原理明确目标基于自己实现的角度分析我会怎么做代码分析 grpc介绍与…...

构造,析构,垃圾回收

构造函数 基本概念 在实例化对象时 会调用的用于初始化的函数 如果不写&#xff0c;默认存在一个无参构造函数 构造函数的写法 1.没有返回值 2.函数名和类名必须相同 3.没有特殊需求时&#xff0c;一般都是public的 4.构造函数可以被重载 5.this代表当前调用该函数的对…...

杂记 | 搭建反向代理防止OpenAI API被封禁(对于此次收到邮件提示7月9日后将被屏蔽的解决参考)

文章目录 重要声明&#xff08;免责&#xff09;01 OpenAI封禁API的情况02 解决方案及原理2.1 原因分析2.2 解决方案2.3 步骤概述 03 操作步骤3.1 购买一个海外服务器3.2 申请一个域名3.3 将域名指向代理服务器3.4 在代理服务器上安装nginx3.5 配置反向代理 重要声明&#xff0…...

利用ref实现防抖

结合vue的customRef function debounceRef(value,time1000){ let t return customRef((track,trigger)>{ return { get(){ track() return value; } set(val){ clearTimeout(t) tsetTimeout(()>{ trigger() valueval },time) } } }) }...

SAP ABAP 之OOALV

文章目录 前言一、案例介绍/笔者需求二、SE24 查看类 a.基本属性 Properties b.接口 Interfaces c.友元 Friends d.属性 Attributes e.方法 Methods f.事件 Events g.局部类型 Types …...

构建实用的Flutter文件列表:从简到繁的完美演进

前言&#xff1a;为什么我们需要文件列表&#xff1f; 在现代科技发展迅速的时代&#xff0c;我们的电脑、手机、平板等设备里积累了大量的文件&#xff0c;这些文件可能是我们的照片、文档、音频、视频等等。然而&#xff0c;当文件数量增多时&#xff0c;我们如何快速地找到…...

spring使用@PostConstruct踩得坑

情况说明&#xff1a; 在一个抽象类中使用PostConstruct注解方法init用于初始化操作。然后每个实现类在初始化时都会调用PostConstruct注解的init方法执行初始化操作。如下代码&#xff1a; public abstract class AbstractClass {/*** 存放各实例.*/public static final Map&…...

【Mac】XnViewMP for Mac(图片浏览查看器)及同类型软件介绍

软件介绍 XnViewMP 是一款多功能、跨平台的图像查看和管理软件&#xff0c;适用于 macOS、Windows 和 Linux 系统。它是经典 XnView 软件的增强版本&#xff0c;更加现代化且功能更强大。XnViewMP 支持数百种图像格式&#xff0c;并提供多种图像处理工具&#xff0c;使其成为摄…...

win10修改远程桌面端口,Windows 10下修改远程桌面端口及服务器关闭445端口的操作指南

Windows 10下修改远程桌面端口及服务器关闭445端口的操作指南 一、修改Windows 10远程桌面端口 在Windows 10系统中&#xff0c;远程桌面连接默认使用3389端口。为了安全起见&#xff0c;建议修改此端口以减少潜在的安全风险。以下是修改远程桌面端口的步骤&#xff1a; 1. 打…...

口感探险之旅:勇闯红酒世界,揭秘复杂风味的无尽奥秘

在葡萄酒的浩瀚海洋中&#xff0c;红酒如同一座深邃而迷人的岛屿&#xff0c;等待着勇敢的探险家们去发掘其背后隐藏的奥秘。每一次品尝红酒&#xff0c;都是一次口感的大冒险&#xff0c;让我们在味蕾的舞动中感受那千变万化的风味。今天&#xff0c;就让我们一起踏上这场探索…...

吉时利 Keithley2440 数字源表

Keithley2440吉时利SMU数字源表 Keithley2440 - 40V、5A、50W源表 吉时利数字源表系列专用于要求紧密结合源和测量 的测试应用。全部数字源表型号都提供精密电压源和电 流源以及测量功能。每款数字源表既是高度稳定的直流 电源也是真仪器级的6位半万用表。此电源的特性包括 低…...

PPT的精细化优化与提升策略

&#x1f44f;&#x1f44f;&#x1f44f;欢迎来到我的博客 ! 亲爱的朋友们&#xff0c;欢迎您们莅临我的博客&#xff01;这是一个分享知识、交流想法、记录生活的温馨角落。在这里&#xff0c;您可以找到我对世界独特视角的诠释&#xff0c;也可以与我一起探讨各种话题&#…...

awtk踩坑记录三:移植awtk-mvvm到Awtk Designer项目

从github下载并编译awtk, awtk-mmvm awtk: https://github.com/zlgopen/awtk/tree/master awtk-mvvm: https://github.com/zlgopen/awtk-mvvm 用awtk-designer新建项目并打开项目目录 首先修改project.json&#xff0c;使其awtk和awtk-mvvm指向上个步骤下载的路径&#xff0c…...

07 - matlab m_map地学绘图工具基础函数 - 绘制等高线

07 - matlab m_map地学绘图工具基础函数 - 绘制等高线 0. 引言1. 关于绘制m_contour2. 关于绘制m_contourf3. 关于绘制m_elev4. 结语 0. 引言 本篇介绍下m_map中添加绘制等高线的一系列函数及其用法&#xff0c;主要函数包括m_elev、m_contour、m_contourf还有一些函数也和绘制…...

Kotlin设计模式:享元模式(Flyweight Pattern)

Kotlin设计模式&#xff1a;享元模式&#xff08;Flyweight Pattern&#xff09; 在移动应用开发中&#xff0c;内存和CPU资源是非常宝贵的。享元模式&#xff08;Flyweight Pattern&#xff09;是一种设计模式&#xff0c;旨在通过对象重用来优化内存使用和性能。本文将深入探…...

java压缩pdf

<!-- PDF操作,itext7全家桶 --><dependency><groupId>com.itextpdf</groupId><artifactId>itext7-core</artifactId><version>7.1.15</version><type>pom</type></dependency>package org.example; import…...

[AIGC] ClickHouse:一款高性能列式数据库管理系统

轮流探索数据库的世界&#xff0c;我们不得不提到一个重要的角色——ClickHouse。ClickHouse是一个开源的列式数据库管理系统(DBMS)&#xff0c;以其卓越的性能&#xff0c;高效的查询能力和易扩展性而被业界广泛关注&#xff0c;尤其在大数据分析方面。 文章目录 1. 什么是 Cl…...

深度学习21-30

1.池化层作用&#xff08;筛选、过滤、压缩&#xff09; h和w变为原来的1/2&#xff0c;64是特征图个数保持不变。 每个位置把最大的数字取出来 用滑动窗口把最大的数值拿出来&#xff0c;把44变成22 2.卷积神经网络 &#xff08;1&#xff09;conv&#xff1a;卷积进行特征…...