当前位置: 首页 > news >正文

dw做网站怎样插入表单/国内免费ip地址

dw做网站怎样插入表单,国内免费ip地址,轻量云做网站怎么样,网站建设 九艾《昇思 25 天学习打卡营第 6 天 | 函数式自动微分 》 活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp 签名:Sam9029 函数式自动微分 自动微分是深度学习中的一个核心概念,它允许我们自动计算模型参数的梯度&#xff0c…

《昇思 25 天学习打卡营第 6 天 | 函数式自动微分 》

活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp
签名:Sam9029


函数式自动微分

自动微分是深度学习中的一个核心概念,它允许我们自动计算模型参数的梯度,从而进行参数更新。在本章节中

将通过MindSpore框架来探索自动微分的原理和应用。

在MindSpore中,自动微分主要通过函数式编程范式来实现。这意味着我们可以通过定义函数来表达数学运算,然后利用MindSpore提供的gradvalue_and_grad接口来获取梯度。

代码示例

首先,我们定义一个简单的单层线性变换模型:

import mindspore
from mindspore import nn, ops
from mindspore import Tensor, Parameterx = ops.ones(5, mindspore.float32)  # 输入张量
y = ops.zeros(3, mindspore.float32)  # 期望输出
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w')  # 权重
b = Parameter(Tensor(np.random.randn(3), mindspore.float32), name='b')  # 偏置

接下来,我们定义计算损失的函数:

def function(x, y, w, b):z = ops.matmul(x, w) + b  # 正向传播loss = ops.binary_cross_entropy_with_logits(z, y)  # 计算损失return loss

使用grad函数计算梯度:

grad_fn = mindspore.grad(function, (2, 3))  # 对w和b求导
grads = grad_fn(x, y, w, b)  # 计算梯度
print(grads)  # 打印梯度

思考与讲解

在上述代码中,我们首先创建了输入数据x和期望输出y,以及模型参数wb。通过Parameter类包装参数,使其成为可训练的参数。

function函数中,我们实现了模型的正向传播过程,并计算了损失。通过grad函数,我们能够自动获取模型参数对损失的梯度,这是自动微分的魔力所在。

Stop Gradient

在某些情况下,我们可能不希望某个中间结果z对最终的梯度计算产生影响。这时,我们可以使用stop_gradient操作来截断梯度的传播:

def function_stop_gradient(x, y, w, b):z = ops.matmul(x, w) + bloss = ops.binary_cross_entropy_with_logits(z, y)return loss, ops.stop_gradient(z)

stop_gradient操作在深度学习中非常有用,尤其是在处理循环神经网络或者需要控制梯度流动的场景中。

神经网络梯度计算

在面向对象编程范式下,我们可以通过继承nn.Cell来构建神经网络模型。以下是一个简单的单层线性网络示例:

class Network(nn.Cell):def init(self):super().init()self.w = wself.b = bdef construct(self, x):z = ops.matmul(x, self.w) + self.breturn z

在构建模型和损失函数后,我们可以通过value_and_grad接口来实现反向传播:

model = Network()
loss_fn = nn.BCEWithLogitsLoss()
forward_fn = lambda x, y: loss_fn(model(x), y)
grad_fn = mindspore.value_and_grad(forward_fn, None, weights=model.trainable_params())
loss, grads = grad_fn(x, y)
print(grads)  # 打印梯度

通过面向对象的方式构建模型,我们可以更清晰地组织和管理模型的参数和行为。value_and_grad接口的使用,让我们能够方便地实现反向传播和梯度更新。

自动微分是深度学习框架中的一个强大工具,它简化了梯度计算的过程,使得我们能够专注于模型的设计和优化。通过MindSpore框架的学习和实践,我对自动微分有了更深入的理解。随着学习的深入,我相信我能够更好地应用这些知识来解决实际问题。

相关文章:

《昇思 25 天学习打卡营第 6 天 | 函数式自动微分 》

《昇思 25 天学习打卡营第 6 天 | 函数式自动微分 》 活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp 签名:Sam9029 函数式自动微分 自动微分是深度学习中的一个核心概念,它允许我们自动计算模型参数的梯度&#xff0c…...

刷题——二叉树的中序遍历

双指针法 void midorder(vector<int>&res, TreeNode* root){if(root NULL) return;midorder(res, root->left);res.push_back(root->val);midorder(res, root->right);}vector<int> inorderTraversal(TreeNode* root) {// write code herevector<…...

圈复杂度.

圈复杂度是衡量代码的重要标准 配置&#xff1a; eslint里面&#xff1a;rules&#xff1a;complexity&#xff1a;[error,10]...

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测 目录 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测&#xff0c;…...

说说 golang 中的接口和反射

1、接口 1.1 类型 Golang 中的接口是一组方法的签名&#xff0c;是实现多态和反射的基础。 type 接口名 interface {method1(参数列表) 返回值列表method2(参数列表) 返回值列表 }不同于 Java 语言&#xff0c;使用 implements 关键字显示的实现接口。Golang 接口的实现都是…...

小程序注册

【 一 】小程序注册 微信公众平台 https://mp.weixin.qq.com/ https://mp.weixin.qq.com/注册 邮箱激活 小程序账户注册 微信小程序配置 微信小程序开发流程 添加项目成员 【 二 】云服务 lass 基础设施服务&#xff08;组装机&#xff09; 你买了一大堆的电脑配件&#x…...

工作记录2

1. 要实现y轴超出部分滚动的效果&#xff0c;可以这样写 <div style"max-height: 384px; overflow-y: auto;"> </div> 2. 当后端接口还没好的时候&#xff0c;可以自己模拟一下接口返回的数据 export const getCommodityDetail (id) > Promise.re…...

linux挂载硬盘(解决linux不显示硬盘问题)

目录 1.查看系统有几块硬盘2.查看挂载情况3.格式化硬盘4.创建挂载目录用于挂载硬盘5.将硬盘挂载到指定的挂载目录6.随系统自启动挂载查看配置文件&#xff0c;看是否已经把这条命令加入配置 帮同门解决挂载失败问题记录 参考视频&#xff1a;只要6步&#xff01;Linux系统下挂载…...

运输标签扫描仪可简化运输和接收任务

Dynamic Web TWAIN 是一个专为Web应用程序设计的TWAIN扫描识别控件。你只需在TWAIN接口写几行代码&#xff0c;就可以用兼容TWAIN的扫描仪扫描文档或从数码相机/采集卡中获取图像。然后用户可以编辑图像并将图像保存为多种格式&#xff0c;用户可保存图像到远程数据库或者Share…...

Stable Diffusion 3 大模型文生图实践

windows教程2024年最新Stable Diffusion本地化部署详细攻略&#xff0c;手把手教程&#xff08;建议收藏!!)_stable diffusion 本地部署-CSDN博客 linux本地安装教程 1.前期准备工作 1&#xff09;创建conda环境 conda create --name stable3 python3.10 2&#xff09;下…...

Linux grep技巧 删除含有指定关键词的行,创建新文件

一. 需求 ⏹有如下文件&#xff0c;现要求 删除含有xuecheng关键字的行删除含有192.168.1.1关键字的行也就是说&#xff0c;最终只会留下127.0.0.1 license.sublimehq.com 127.0.0.1 www.xuecheng.com 127.0.0.1 img.xuecheng.com 192.168.1.1 www.test.com 127.0.0.1 video…...

ChatMoney还能写剧本杀?

本文由 ChatMoney团队出品 近年来&#xff0c;剧本杀作为一种新兴社交游戏&#xff0c;收到了越来越多人的喜爱&#xff0c;它不仅需要玩家们发挥自身演技&#xff0c;还需运用逻辑思维推理&#xff0c;分析所获得的线索&#xff0c;找出案件真凶。然而你是否想过&#xff0c;你…...

优化系统小工具

一款利用VB6编写的系统优化小工具&#xff0c;系统优化、桌面优化、清理垃圾、查找文件等功能。 下载:https://download.csdn.net/download/ty5858/89432367...

调幅信号AM的原理与matlab实现

平台&#xff1a;matlab r2021b 本文知识内容摘自《软件无线电原理和应用》 调幅就是使载波的振幅随调制信号的变化规律而变化。用音频信号进行调幅时&#xff0c;其数学表达式可以写为: 式中&#xff0c;为调制音频信号&#xff0c;为调制指数&#xff0c;它的范围在(0&…...

[MySql]两阶段提交

文章目录 什么是binlog使用binlog进行恢复的流程 什么是redolog缓冲池redologredolog结构 两阶段提交 什么是binlog binlog是二进制格式的文件&#xff0c;用于记录用户对数据库的修改&#xff0c;可以作用于主从复制过程中数据同步以及基于时间点的恢复&#xff08;PITR&…...

掌握rpc、grpc并探究内在本质

文章目录 rpc是什么&#xff1f;又如何实现服务通信&#xff1f;理解rpcRPC的通信过程通信协议的选择小结RPC VS Restful net_rpc实践案例net/rpc包介绍创建服务端创建client 看看net_rpc的通信调度实现的内部原理明确目标基于自己实现的角度分析我会怎么做代码分析 grpc介绍与…...

构造,析构,垃圾回收

构造函数 基本概念 在实例化对象时 会调用的用于初始化的函数 如果不写&#xff0c;默认存在一个无参构造函数 构造函数的写法 1.没有返回值 2.函数名和类名必须相同 3.没有特殊需求时&#xff0c;一般都是public的 4.构造函数可以被重载 5.this代表当前调用该函数的对…...

杂记 | 搭建反向代理防止OpenAI API被封禁(对于此次收到邮件提示7月9日后将被屏蔽的解决参考)

文章目录 重要声明&#xff08;免责&#xff09;01 OpenAI封禁API的情况02 解决方案及原理2.1 原因分析2.2 解决方案2.3 步骤概述 03 操作步骤3.1 购买一个海外服务器3.2 申请一个域名3.3 将域名指向代理服务器3.4 在代理服务器上安装nginx3.5 配置反向代理 重要声明&#xff0…...

利用ref实现防抖

结合vue的customRef function debounceRef(value,time1000){ let t return customRef((track,trigger)>{ return { get(){ track() return value; } set(val){ clearTimeout(t) tsetTimeout(()>{ trigger() valueval },time) } } }) }...

SAP ABAP 之OOALV

文章目录 前言一、案例介绍/笔者需求二、SE24 查看类 a.基本属性 Properties b.接口 Interfaces c.友元 Friends d.属性 Attributes e.方法 Methods f.事件 Events g.局部类型 Types …...

构建实用的Flutter文件列表:从简到繁的完美演进

前言&#xff1a;为什么我们需要文件列表&#xff1f; 在现代科技发展迅速的时代&#xff0c;我们的电脑、手机、平板等设备里积累了大量的文件&#xff0c;这些文件可能是我们的照片、文档、音频、视频等等。然而&#xff0c;当文件数量增多时&#xff0c;我们如何快速地找到…...

spring使用@PostConstruct踩得坑

情况说明&#xff1a; 在一个抽象类中使用PostConstruct注解方法init用于初始化操作。然后每个实现类在初始化时都会调用PostConstruct注解的init方法执行初始化操作。如下代码&#xff1a; public abstract class AbstractClass {/*** 存放各实例.*/public static final Map&…...

【Mac】XnViewMP for Mac(图片浏览查看器)及同类型软件介绍

软件介绍 XnViewMP 是一款多功能、跨平台的图像查看和管理软件&#xff0c;适用于 macOS、Windows 和 Linux 系统。它是经典 XnView 软件的增强版本&#xff0c;更加现代化且功能更强大。XnViewMP 支持数百种图像格式&#xff0c;并提供多种图像处理工具&#xff0c;使其成为摄…...

win10修改远程桌面端口,Windows 10下修改远程桌面端口及服务器关闭445端口的操作指南

Windows 10下修改远程桌面端口及服务器关闭445端口的操作指南 一、修改Windows 10远程桌面端口 在Windows 10系统中&#xff0c;远程桌面连接默认使用3389端口。为了安全起见&#xff0c;建议修改此端口以减少潜在的安全风险。以下是修改远程桌面端口的步骤&#xff1a; 1. 打…...

口感探险之旅:勇闯红酒世界,揭秘复杂风味的无尽奥秘

在葡萄酒的浩瀚海洋中&#xff0c;红酒如同一座深邃而迷人的岛屿&#xff0c;等待着勇敢的探险家们去发掘其背后隐藏的奥秘。每一次品尝红酒&#xff0c;都是一次口感的大冒险&#xff0c;让我们在味蕾的舞动中感受那千变万化的风味。今天&#xff0c;就让我们一起踏上这场探索…...

吉时利 Keithley2440 数字源表

Keithley2440吉时利SMU数字源表 Keithley2440 - 40V、5A、50W源表 吉时利数字源表系列专用于要求紧密结合源和测量 的测试应用。全部数字源表型号都提供精密电压源和电 流源以及测量功能。每款数字源表既是高度稳定的直流 电源也是真仪器级的6位半万用表。此电源的特性包括 低…...

PPT的精细化优化与提升策略

&#x1f44f;&#x1f44f;&#x1f44f;欢迎来到我的博客 ! 亲爱的朋友们&#xff0c;欢迎您们莅临我的博客&#xff01;这是一个分享知识、交流想法、记录生活的温馨角落。在这里&#xff0c;您可以找到我对世界独特视角的诠释&#xff0c;也可以与我一起探讨各种话题&#…...

awtk踩坑记录三:移植awtk-mvvm到Awtk Designer项目

从github下载并编译awtk, awtk-mmvm awtk: https://github.com/zlgopen/awtk/tree/master awtk-mvvm: https://github.com/zlgopen/awtk-mvvm 用awtk-designer新建项目并打开项目目录 首先修改project.json&#xff0c;使其awtk和awtk-mvvm指向上个步骤下载的路径&#xff0c…...

07 - matlab m_map地学绘图工具基础函数 - 绘制等高线

07 - matlab m_map地学绘图工具基础函数 - 绘制等高线 0. 引言1. 关于绘制m_contour2. 关于绘制m_contourf3. 关于绘制m_elev4. 结语 0. 引言 本篇介绍下m_map中添加绘制等高线的一系列函数及其用法&#xff0c;主要函数包括m_elev、m_contour、m_contourf还有一些函数也和绘制…...

Kotlin设计模式:享元模式(Flyweight Pattern)

Kotlin设计模式&#xff1a;享元模式&#xff08;Flyweight Pattern&#xff09; 在移动应用开发中&#xff0c;内存和CPU资源是非常宝贵的。享元模式&#xff08;Flyweight Pattern&#xff09;是一种设计模式&#xff0c;旨在通过对象重用来优化内存使用和性能。本文将深入探…...