当前位置: 首页 > news >正文

长沙网站建设网/seo每日工作

长沙网站建设网,seo每日工作,建网站需要编程吗,网络上市场推广介绍 石墨烯算法是一种新兴的优化算法,灵感来自于石墨烯的结构和特性。石墨烯是一种由碳原子构成的二维蜂窝状晶格结构,具有优异的机械、电学和热学性能。石墨烯算法通过模拟石墨烯原子之间的相互作用和迁移,来求解复杂的优化问题 基本概念…

介绍

石墨烯算法是一种新兴的优化算法,灵感来自于石墨烯的结构和特性。石墨烯是一种由碳原子构成的二维蜂窝状晶格结构,具有优异的机械、电学和热学性能。石墨烯算法通过模拟石墨烯原子之间的相互作用和迁移,来求解复杂的优化问题

基本概念

石墨烯的结构:
石墨烯由碳原子组成,每个碳原子与其他三个碳原子通过共价键连接,形成一个蜂窝状的二维晶格结构。这种结构使得石墨烯具有非常高的强度和导电性。

石墨烯算法的灵感:
石墨烯算法借鉴了石墨烯的这种晶格结构和原子迁移特性,通过模拟碳原子在二维平面上的移动和相互作用,来寻找优化问题的最优解

算法步骤

初始化:
初始化一组解,称为“碳原子”,并将它们随机分布在二维平面上。这些解代表了问题的初始解集。

评估适应度:
计算每个碳原子的适应度值,根据适应度函数评估每个解的优劣。

更新位置:
根据某种规则更新碳原子的位置,模拟碳原子在二维平面上的迁移。这种迁移可以通过模拟退火、粒子群算法或其他元启发式方法来实现。

局部搜索:
在每次迭代中,对每个碳原子进行局部搜索,进一步优化其位置。局部搜索可以通过梯度下降或其他局部优化方法来实现。

选择与替换:
根据适应度值选择较优的碳原子,并用它们替换较差的碳原子,形成新的解集。

迭代:
重复上述步骤,直到达到预定的迭代次数或满足收敛条件。

石墨烯算法的优点

全局搜索能力强:
石墨烯算法能够在广阔的搜索空间中找到全局最优解,避免陷入局部最优。

收敛速度快:
通过模拟碳原子的快速迁移和局部优化,石墨烯算法具有较快的收敛速度。

适应性强:
石墨烯算法可以处理各种类型的优化问题,包括连续、离散和混合优化问题

石墨烯算法的应用

石墨烯算法可以应用于许多实际问题,如:

工程优化:
用于结构优化、路径规划、资源分配等工程领域的问题。

机器学习:
用于神经网络训练、特征选择、超参数优化等机器学习任务。

数据挖掘:
用于聚类分析、关联规则挖掘、分类等数据挖掘任务。

金融优化:
用于投资组合优化、风险管理、期权定价等金融领域的问题

本文代码

定义期权定价模型:我们可以使用Black-Scholes模型来计算欧式期权的理论价格。
设计石墨烯优化算法:模拟石墨烯原子之间的相互作用和迁移,以找到最优的期权定价参数。
整合并实现:将期权定价模型和石墨烯算法整合在一起。

期权定价模型(Black-Scholes)

Black-Scholes模型用于计算欧式看涨期权(Call Option)和看跌期权(Put Option)的价格:
在这里插入图片描述

核心代码

Graphene_Option_Pricing.m

function [best_params, best_fitness] = Graphene_Option_Pricing(S0, K, r, T, market_price, is_call)% 参数初始化dim = 1;  % 需要优化的参数维度:波动率σlower_bound = [0.01];  % 下界:波动率upper_bound = [1.0];  % 上界:波动率max_iter = 500;  % 最大迭代次数pop_size = 30;  % 种群大小% 适应度函数:计算Black-Scholes理论价格与市场价格的均方误差fitness_func = @(params) calculate_fitness(params, S0, K, r, T, market_price, is_call);% 石墨烯优化算法[best_params, best_fitness] = Graphene_Optimization(dim, lower_bound, upper_bound, max_iter, pop_size, fitness_func);disp('Best parameters found:');disp(best_params);disp('Fitness of best parameters:');disp(best_fitness);% 验证找到的最佳波动率参数optimal_sigma = best_params(1);% 使用最佳波动率参数计算期权价格if is_callmodel_price = Black_Scholes_Call(S0, K, r, optimal_sigma, T);elsemodel_price = Black_Scholes_Put(S0, K, r, optimal_sigma, T);end% 打印模型价格和市场价格进行比较disp('Optimal sigma:');disp(optimal_sigma);disp('Model option price with optimal sigma:');disp(model_price);disp('Market option price:');disp(market_price);
endfunction fitness = calculate_fitness(params, S0, K, r, T, market_price, is_call)sigma = params(1);if is_callmodel_price = Black_Scholes_Call(S0, K, r, sigma, T);elsemodel_price = Black_Scholes_Put(S0, K, r, sigma, T);end
endfunction C = Black_Scholes_Call(S0, K, r, sigma, T)d1 = (log(S0 / K) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T));d2 = d1 - sigma * sqrt(T);C = S0 * normcdf(d1) - K * exp(-r * T) * normcdf(d2);
endfunction P = Black_Scholes_Put(S0, K, r, sigma, T)d1 = (log(S0 / K) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T));d2 = d1 - sigma * sqrt(T);P = K * exp(-r * T) * normcdf(-d2) - S0 * normcdf(-d1);
endfunction [best_solution, best_fitness] = Graphene_Optimization(dim, lower_bound, upper_bound, max_iter, pop_size, fitness_func)% 初始化positions = lower_bound + (upper_bound - lower_bound) .* rand(pop_size, dim);% 主循环for iter = 1:max_iter% 更新位置for i = 1:pop_size% 模拟碳原子的迁移new_position = positions(i, :) + rand(1, dim) .* (best_solution - positions(i, :));new_position = max(min(new_position, upper_bound), lower_bound);new_fitness = fitness_func(new_position);% 局部搜索if new_fitness < fitness(i)positions(i, :) = new_position;fitness(i) = new_fitness;end% 更新最优解if new_fitness < best_fitnessbest_fitness = new_fitness;best_solution = new_position;endend% 记录迭代过程中的最优值(可选)disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(best_fitness)]);end
end

run_graphene_option_pricing.m

function run_graphene_option_pricing% 示例使用
S0 = 100;  % 当前股票价格
K = 100;  % 执行价格
r = 0.05;  % 无风险利率
T = 1;  % 到期时间(年)
market_price = 10;  % 市场期权价格
is_call = true;  % 是否为看涨期权[best_params, best_fitness] = Graphene_Option_Pricing(S0, K, r, T, market_price, is_call);
disp('Best parameters for sigma:');
disp(best_params);
disp('Best fitness:');
disp(best_fitness);end

说明

初始化:初始化石墨烯算法的种群,包括参数的上下界、最大迭代次数和种群大小。
适应度函数:计算理论价格和市场价格之间的均方误差。
Black-Scholes模型:计算欧式看涨期权和看跌期权的价格。
石墨烯优化算法:通过模拟石墨烯原子的迁移和相互作用,找到最佳的期权定价参数。
结果输出:输出最佳参数和相应的适应度值。

效果

在这里插入图片描述

完整代码获取

微信扫一扫,回复"石墨烯优化算法"即可查看完整代码
在这里插入图片描述

相关文章:

群体优化算法---石墨烯优化算法介绍以及在期权定价上的应用(Black-Scholes模型来计算欧式期权的理论价格)

介绍 石墨烯算法是一种新兴的优化算法&#xff0c;灵感来自于石墨烯的结构和特性。石墨烯是一种由碳原子构成的二维蜂窝状晶格结构&#xff0c;具有优异的机械、电学和热学性能。石墨烯算法通过模拟石墨烯原子之间的相互作用和迁移&#xff0c;来求解复杂的优化问题 基本概念…...

创纪录!沃飞长空完成新一轮融资,实力获资方认可

作为全球竞逐的战略性新兴产业&#xff0c;今年首次写入政府工作报告的“低空经济”热度正持续提升&#xff0c;在政策、产业等多个层面均有重大突破。行业的飞速发展也吸引了投资界的目光&#xff0c;越来越多资本正投向低空经济。 近期&#xff0c;国内领先的低空出行企业吉…...

1991java Web体检预约管理系统eclipse定制开发mysql数据库BS模式java编程jdbc

一、源码特点 JSP体检预约管理系统是一套完善的web设计系统&#xff0c;对理解JSP java 编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,eclipse开发&#xff0c;数据库为Mysql5.0&#xff0c;使用…...

如何优雅终止线程/线程池

如何优雅终止线程 分为两个阶段终止线程 1、interrupted(): 让线程从休眠状态转换到RUNNABLE 状态 2、线程终止的标志位:线程会在合适的时机检查这个标志位&#xff0c;如果发现符合终止条件&#xff0c;则自动退出 run() 方法 public class MonitorThread extends Thread {/…...

泰迪智能科技实验室产品-云计算资源管理平台介绍

云计算资源管理平台是一款集群应用程序管理平台&#xff0c;以Docker、Kubernetes为核心引擎的容器化应用部署、运行环境&#xff0c;对数据中心的物理服务器、网络、存储、虚拟服务器等基础架构资源进行集中统一的管理、分配、监控等。平台旨在围绕行业应用逐步由“虚拟化”向…...

.Net WebApi启动 Swagger异常报错: Failed to load API definition

问题描述&#xff1a; 基于.Net6.0的WebApi 启动Swagger报错&#xff1a;Failed to load API definition。即无法加载API定义。 解决方法&#xff1a; 分析程序输出日志&#xff1a; 错误信息&#xff1a; ERROR Microsoft.AspNetCore.Diagnostics.DeveloperExceptionPageMid…...

CSS新手入门笔记【导入方法、选择器介绍、选择器优先级、属性详细介绍、盒子模型】

目录 一、目的与优势二、CSS导入方式三、语法结构四、选择器类型基本选择器组合选择器伪类与伪元素属性选择器 六、选择器优先级总结 六、CSS属性1. 字体与文本属性2. 背景属性3. 尺寸与盒模型属性4. 布局与定位5. 列表样式6. 边框与轮廓7. 文本装饰与效果8. 动画与过渡9. 伪类…...

制作高校专属PPT时,如何将校徽设置成透明底色?无须PS

目录 示例&#xff1a;以清华大学为例 1必应搜索“清华大学校徽” 2保存清华大学校徽及校名。 3将校徽导入到PPT中 ​4 选中校徽&#xff0c;然后依次选择“图片格式”-->颜色-->设置透明色​编辑 5出现“画笔”&#xff0c;由于截图的缘故&#xff0c;画笔没有在截…...

设计模式之【适配器模式】

类适配器实现&#xff08;继承&#xff09; 类适配器通过继承来实现适配器功能 // 目标接口 public interface Target {void request(); }// 被适配者 public class Adaptee {public void specificRequest() {System.out.println("Adaptee: specificRequest");} }/…...

AI论文降重:一键操作,让你的论文查重率瞬间下降

高查重率是许多毕业生的困扰。通常&#xff0c;高查重率源于过度引用未经修改的参考资料和格式错误。传统的降重方法&#xff0c;如修改文本和增添原创内容&#xff0c;虽必要但耗时且成效不一。 鉴于此&#xff0c;应用AI工具进行AIGC降重成为了一个高效的解决方案。这些工具…...

Cmake--学习笔记

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…...

LangChain让LLM带上记忆

最近两年&#xff0c;我们见识了“百模大战”&#xff0c;领略到了大型语言模型&#xff08;LLM&#xff09;的风采&#xff0c;但它们也存在一个显著的缺陷&#xff1a;没有记忆。 在对话中&#xff0c;无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangCha…...

Word恢复历史文档,记好4个方法就足够

“我正在准备一个重要的报告&#xff0c;但是电脑突然就崩溃了&#xff0c;导致我的文档还没保存就被关闭了&#xff0c;大家有什么方法可以恢复Word历史文档吗&#xff1f;快给我出出主意吧&#xff01;” 在数字化时代&#xff0c;文档编辑和保存已经成为我们日常工作和学习中…...

收银系统源码-千呼新零售2.0【线上营销】

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货等连锁店使用。 详细介绍请查看&a…...

OnlyOffice测评

官方链接&#xff1a; https://www.onlyoffice.com/zh/office-suite.aspx https://www.onlyoffice.com/zh/pdf-editor.aspx OnlyOffice&#xff1a;引领办公效率的新标杆 在数字化时代的浪潮中&#xff0c;办公软件已经成为我们日常工作中不可或缺的一部分。然而&#xff0c;…...

UDS - 8 Application layer protocol

8 应用层协议 来自:ISO 14229-1-2020.pdf 8.1 一般定义 应用层协议应始终是确认消息传输,这意味着对于从客户端发送的每个服务请求,服务器应发送一个或多个相应的响应。 此规则的唯一例外是使用功能寻址或请求/指示指定不生成响应/确认的少数情况。为了不给系统带来许多不…...

二叉树公共最近祖先

文章目录 1. **二叉搜索树&#xff08;Binary Search Tree, BST&#xff09;**2. **一般二叉树****递归方法**:**迭代方法**: 案例展示二叉搜索树&#xff08;BST&#xff09;中查找LCA一般二叉树中查找LCA1. **使用哈希表存储父节点信息**2. **处理多个查询**3. **异常处理**结…...

智慧运维系统指导规范

随着信息技术的迅猛发展&#xff0c;智慧运维系统在现代企业中扮演着越来越重要的角色。为了提高运维效率、保障系统稳定运行&#xff0c;并制定一套科学、合理的智慧运维系统指导规范至关重要。本规范旨在为企业提供一套全面、系统的智慧运维管理方法和操作准则&#xff0c;以…...

最新自助下单彩虹云商城系统源码,含小储云商城模板免授权

最新彩虹商城源码,含小储云商城模板免授权&#xff0c;试用了一下还行&#xff0c;具体的大家可以看看 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/89405387 更多资源下载&#xff1a;关注我。...

头条系统-05-延迟队列精准发布文章-概述添加任务(db和redis实现延迟任务)、取消拉取任务定时刷新(redis管道、分布式锁setNx)

文章目录 延迟任务精准发布文章1)文章定时发布2)延迟任务概述2.1)什么是延迟任务2.2)技术对比2.2.1)DelayQueue2.2.2)RabbitMQ实现延迟任务2.2.3)redis实现 3)redis实现延迟任务4)延迟任务服务实现4.1)搭建heima-leadnews-schedule模块4.2)数据库准备4.3)安装redis4.4)项目集成…...

.gitignore git添加忽略文件

在项目的根目录下创建一个名为 .gitignore 的文件。在这个文件中&#xff0c;列出您希望Git忽略的文件和文件夹的名称或模式。 下面是一些基本的步骤和规则&#xff1a; 创建 .gitignore 文件&#xff1a;在项目根目录下创建一个名为 .gitignore 的文件。如果没有这个文件&…...

面向遥感图像的多阶段特征融合目标检测方法

源自&#xff1a;电子学报 作者&#xff1a;陈立 张帆 郭威 黄赟 注&#xff1a;若出现无法显示完全的情况&#xff0c;可 V 搜索“人工智能技术与咨询”查看完整文章 摘 要 遥感图像目标具有多尺度、大横纵比、多角度等特性&#xff0c;给传统的目标检测方法带来了新的…...

操作系统面试篇一

很多读者抱怨计算操作系统的知识点比较繁杂&#xff0c;自己也没有多少耐心去看&#xff0c;但是面试的时候又经常会遇到。所以&#xff0c;我带着我整理好的操作系统的常见问题来啦&#xff01;这篇文章总结了一些我觉得比较重要的操作系统相关的问题比如 用户态和内核态、系统…...

OPenFast软件中的NRELOffshrBsline5MW_Onshore_ServoDyn.dat文件详解

我先简单概括一下&#xff0c;后续我再详细总结&#xff1a;文件“NRELOffshrBsline5MW_Onshore_ServoDyn.dat”是用于NREL 5.0 MW基准风力发电机的ServoDyn模块的输入文件。它定义了仿真控制、变桨控制、发电机和扭矩控制、偏航控制以及输出设置等各种参数。以下是主要内容的总…...

搭建rtmp/rtsp流媒体服务器的步骤

很多文章介绍使用ffmpeg推送和拉流&#xff0c;执行推流命令&#xff1a; D:\software\ffmpeg-7.0.1-full_build\bin\ffmpeg.exe -re -stream_loop -1 -i "D:\Video\汪汪队立大功\S07\001.mp4" -vcodec h264 -acodec aac -f flv rtmp://127.0.0.1/live/test110 经常…...

vue自定义事件传递数据

页面应用一个组件&#xff0c;采用自定义事件来传递参数 $emit是Vue实例的一个方法&#xff0c;它用于触发自定义事件。这些事件可以被父组件监听到&#xff0c;从而实现子组件向父组件的通信。 这种方法的好处在于&#xff0c;它可以让数据的流动保持单向&#xff0c;有助于…...

TensorBoard 安装与启动

安装&#xff1a;pip install tensorboard启动&#xff1a;tensorboard --logdir<events_directory_name> events_directory_name 为运行 tensorboard 后&#xff0c;产生的 events 文件所在的路径 博客参考&#xff1a;TensorBoard最全使用教程...

云计算运维工程师的突发状况处理

云计算运维工程师在应对突发的故障和紧急情况时,需要采取一系列迅速而有效的措施来最小化服务中断的时间并恢复系统的稳定性。 以下是一些关键步骤和策略: 快速响应: 立即识别并确认故障的性质和范围。通知团队成员和相关的利益相关者,确保所有人了解当前情况。故障诊断:…...

【CSS in Depth 2 精译】1.6 本章小结

1.6 本章小结 浏览器遵循层叠规则来确定哪些样式在哪些元素上生效&#xff1b;选择器优先级由选择器中的 id 数、class 类的个数以及标签名的个数来共同确定。优先级更高的声明将覆盖较低声明&#xff1b;当某些属性没有层叠值时&#xff0c;它们会从父元素继承一个样式值。这…...

FFmpeg源码:ff_h2645_extract_rbsp函数分析

一、ff_h2645_extract_rbsp函数的声明 ff_h2645_extract_rbsp函数的声明放在FFmpeg源码&#xff08;本文演示用的FFmpeg源码版本为5.0.3&#xff0c;该ffmpeg在CentOS 7.5上通过10.2.1版本的gcc编译&#xff09;的头文件libavcodec/h2645_parse.h中。 /*** Extract the raw (u…...