【教程】几种不同的RBF神经网络
本站原创文章,转载请说明来自《老饼讲解-机器学习》www.bbbdata.com
目录
- 一、经典RBF神经网络
- 1.1.经典径向基神经网络是什么
- 1.2.经典径向基神经网络-代码与示例
- 二、广义回归神经网络GRNN
- 2.1.广义回归神经网络是什么
- 2.2.广义回归神经网络是什么-代码与示例
- 三、概率神经网络PNN
- 3.1.概率神经网络是什么
- 3.2.概率神经网络是什么-代码与示例
RBF神经网络指的是用RBF曲线来构成的神经网络模型,
常见的RBF神经网络包括径向基神经网络、概率神经网络、广义回归神经网络等等。
下面我们介绍这几种常见的RBF神经网络。
一、经典RBF神经网络
1.1.经典径向基神经网络是什么
经典径向基神经网络的思想很纯粹,如下
可以看到,经典径向基神经网络在各个数据点都生成一个径向基。每个径向基的宽度是预设的,然后再求解每个径向基的高度,使得最后所有径向基叠加后能拟合目标曲线。可知,经典径向基神经网络是纯粹的曲线拟合,就是仅从数学角度去使用径向基函数来拟合目标曲线。
1.2.经典径向基神经网络-代码与示例
在matlab中使用newrbe来实现一个径向基神经网络,具体示例如下:
%------代码说明:用newrbe构建一个径向基神经网络 -----------------
% 来自《老饼讲解神经网络》www.bbbdata.com ,matlab版本:2018a
%-------------------------------------------------------------------%
%----数据准备----
x = [-2,-1,0,1,2;-6,-2,0,3,8]; % 输入数据
y = [3,2,3,1,2]; % 输出数据
%----网络训练----
net = newrbe(x, y, 0.5); % 以X,Y建立径向基网络,目标误差为0.01,径向基的宽度参数spread=0.5
py = sim(net,x) % 用建好的网络进行预测,这里的x是要用来进行预测的输入% ----打印结果----------
err_rate = mean(abs(py-y)./abs(y)) % 计算相对误差占比
plot(1:length(y),y,'*',1:length(y),py,'o') % 绘制结果,x轴代表样本
legend('原始数据的y','网络预测的y') % 添加图例
运行结果如下:
可以看到,网络的预测值与真实值完全一致,
这并非偶然,因为本例用于预测的数据就是训练数据,而newrbe在训练数据上是0误差的
二、广义回归神经网络GRNN
2.1.广义回归神经网络是什么
广义回归神经网络General Regression Neural Network也是径向基神经网络的一种,广义回归使用所有历史样本点来综合评估当前样本点。类似于投票的思想,即所有历史样本点都给出当前样本点与自己相似的概率,然后得到最终的综合评估,如下:
y = ∑ i y i ∗ p i y =\sum\limits_{i}y_i*p_i y=i∑yi∗pi
其中,Pi的计算为:
p ^ i = exp ( − a 2 ( x − x i ) 2 ) p i = p j / ∑ j P j \hat{p}_i = \exp(-a^2(x-x_i)^2) \\p_i =p_j/ \sum\limits_{j}P_j p^i=exp(−a2(x−xi)2)pi=pj/j∑Pj
pi的意义如下图所示:
它假设x与任何一个已有样本中 xi 相同的概率都服从正态分布,然后再进行归一化就得到pi的计算公式。
相比经典RBF,广义回归更具解释性。
2.2.广义回归神经网络是什么-代码与示例
在matlab中使用newgrnn来实现一个广义回归神经网络,具体示例如下:
%代码说明:径向基newgrnn的matlab工具箱使用Demo
%来自《老饼讲解神经网络》www.bbbdata.com ,matlab版本:2014b
%-----------------------------------------------------
%----数据准备----
x1 = 1:0.2:10;
x2 = -5:0.2:4;
X = [x1;x2]; % 输入数据,注意中间是分号
Y = sin (X(1,:))+X(2,:); % 输出数据%----网络训练----
net = newgrnn(X,Y); % 网络建立与训练
simY = sim(net, X); % 用建好的网络拟合原始数据%----结果对比----
figure(1);
t = 1:size(Y,2);
plot(t,Y,'*',t,simY,'r')
三、概率神经网络PNN
3.1.概率神经网络是什么
概率神经网络ProbabilisticNeuralNetwork是广义回归神经网络的拓展,广义回归神经网络用于数值预测,而概率神经网络则用于类别预测。
概率神经网络用于类别预测,有多少个类别就有多少个输出,概率神经网络仅仅是将广义回归神经网络再加上一个compet运算,即哪个输出最大就置1,其余置0。
3.2.概率神经网络是什么-代码与示例
在matlab中使用newgrnn来实现一个广义回归神经网络,具体示例如下:
% 训练数据
P = [1 2 3 4 5 6 7]; % 输入数据
Tc = [1 2 3 2 2 3 1]; % 输出数据:类别编号
T = ind2vec(Tc); % 将类标转换为onehot编码格式%设计一个PNN神经网络,并测试
net = newpnn(P,T); % 生成一个概率神经网络
Y = sim(net,P) % 用网络进行预测
Yc = vec2ind(Y) % 将预测结果转为类别编号
运行结果如下:
以上就是三种常见的RBF神经网络的介绍了
相关链接:
《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂
《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂
《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂
相关文章:

【教程】几种不同的RBF神经网络
本站原创文章,转载请说明来自《老饼讲解-机器学习》www.bbbdata.com 目录 一、经典RBF神经网络1.1.经典径向基神经网络是什么1.2.经典径向基神经网络-代码与示例 二、广义回归神经网络GRNN2.1.广义回归神经网络是什么2.2.广义回归神经网络是什么-代码与示例 三、概率…...

【Liunx-后端开发软件安装】Liunx安装FDFS并整合nginx
【Liunx-后端开发软件安装】Liunx安装nacos 文章中涉及的相关fdfs相关软件安装包请点击下载: https://download.csdn.net/download/weixin_49051190/89471122 一、简介 FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括…...

【Java笔记】Flyway数据库管理工具的基本原理
文章目录 1. 工作流程2. 版本号校验算法3. 锁机制3.1 为什么数据库管理工具需要锁3.2 flyway的锁机制 Reference 最近实习做的几个项目都用到了Flyway来做数据库的版本管理,顺便了解了下基本原理,做个记录。 详细的使用就不写了,网上教程很多…...

国际数字影像产业园创业培训,全面提升创业能力!
国际数字影像产业园作为数字影像产业的创新高地,致力于提供全面的创业支持服务。其中,创业培训作为重要的组成部分,旨在通过系统的课程设置和专业的讲师团队,为创业者提供从基础到进阶的全方位指导,帮助他们在数字影像…...

pyqt5 制作视频剪辑软件,切割视频
该软件用于切割视频,手动选取视频片段的起始帧和结束帧并保存为json文件。gui界面如下:包含快进、快退、暂停等功能, 代码如下: # codingUTF-8 """ theme: pyqt5实现动作起始帧和结束帧的定位,将定位到…...
VUE----通过nvm管理node版本
使用 NVM(Node Version Manager)来管理和切换 Node.js 版本是一个很好的选择。以下是在 苹果电脑macos系统 上使用 NVM 安装和切换 Node.js 版本的步骤: 1. 安装 NVM 如果你还没有安装 NVM,可以按照以下步骤进行安装:…...
R语言进行字符的替换和删减gsub,substr函数
目录 R语言读文件“-“变成“.“ 提取列字符前几个 提取列字符末尾几个 进行字母替换 paste0函数使用 长宽数据转换 R语言读文件“-“变成“.“ R语言读文件“-“变成“.“_r语言 列名中的-变成了点-CSDN博客 怎样将"."还原为"-" rm(list = ls()…...

2024年6月27日,欧盟REACH法规新增第31批1项SVHC高关注物质
ECHA公布第31批1项SVHC,物质已增至241项 2024年6月27日,ECHA公布第31批1项SVHC,总数达241项。新增物质未包括磷酸三苯酯,仍在评议中。REACH法规要求SVHC含量超0.1%需告知下游,出口超1吨须通报ECHA。SCIP通报要求SVHC含…...

高通410-linux棒子设置网络驱动
1.首先打开设备管理器 2.看到其他设备下的RNDIS,右键更新驱动程序 3.点击浏览我的电脑… 最后一个...
PostgreSQL的系统视图pg_stat_archiver
PostgreSQL的系统视图pg_stat_archiver 在 PostgreSQL 数据库中,pg_stat_archiver 视图提供了关于归档进程(archiver process)的统计信息。归档进程负责将 WAL(Write-Ahead Logging)日志文件复制到归档存储࿰…...

【D3.js in Action 3 精译】第一部分 D3.js 基础知识
第一部分 D3.js 基础知识 欢迎来到 D3.js 的世界!可能您已经迫不及待想要构建令人惊叹的数据可视化项目了。我们保证,这一目标很快就能达成!但首先,我们必须确保您已经掌握了 D3.js 的基础知识。这一部分提到的概念将会在您后续的…...
面试经验分享 | 渗透测试工程师(实习岗)
所面试的公司:某安全厂商 所在城市:南京 面试职位:渗透测试工程师实习岗位 面试过程: 腾讯会议(视频) 面试过程:整体流程就是自我介绍加上一些问题问题balabalabala。。。由于面的岗位是渗透…...

STM32 IWDG(独立看门狗)
1 IWDG简介 STM32有两个看门狗:一个是独立看门狗(IWDG),另外一个是窗口看门狗。独立看门狗也称宠物狗,窗口看门狗也称警犬。本文主要分析独立看门狗的功能和它的应用。 独立看门狗用通俗一点的话来解释就是一个12位的…...
ios swift5 获取wifi列表
参考博客: iOS之Wifi开发探究 - 稀土掘金 iOS 无法获取 WiFi 列表?一定是因为你不知道这个框架 - 稀土掘金 iOS获取Wifi列表详解 - 简书...
回溯法c++学习 解决八皇后问题
使用回溯法解决八皇后问题 八皇后问题是一个以国际象棋为背景的问题:如何能够在88 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。这…...

5. Spring IoCDI ★ ✔
5. Spring IoC&DI 1. IoC & DI ⼊⻔1.1 Spring 是什么?★ (Spring 是包含了众多⼯具⽅法的 IoC 容器)1.1.1 什么是容器?1.1.2 什么是 IoC?★ (IoC: Inversion of Control (控制反转))总…...

数据库自动备份到gitee上,实现数据自动化备份
本人有个不太好的习惯,每次项目的数据库都是在线上创建,Navicat 连接线上数据库进行处理,最近有一个项目需要二次升级,发现老项目部署的服务器到期了,完蛋,数据库咩了!!!…...
探索 Spring Cloud Gateway:构建微服务架构的关键一环
1. 简介 在当今的分布式系统中,微服务架构已经成为了一种流行的架构模式。在微服务架构中,服务被拆分为小型、可独立部署的服务单元,这些服务单元能够通过网络互相通信,形成一个整体的应用系统。然而,随着微服务数量的…...
P1114 “非常男女”计划最优解
原题地址 P1114 “非常男女”计划 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码题解 AC代码(1) 因为用的是级的算法,所以最后一个 了,这里使用特判来得到的,给你们放一下代码: #include <bi…...

C++ | Leetcode C++题解之第187题重复的DNA序列
题目: 题解: class Solution {const int L 10;unordered_map<char, int> bin {{A, 0}, {C, 1}, {G, 2}, {T, 3}}; public:vector<string> findRepeatedDnaSequences(string s) {vector<string> ans;int n s.length();if (n < L…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...