Python爬虫技术及其原理探秘
导言
随着互联网的发展,大量的数据被存储在网络上,而我们需要从中获取有用的信息。Python作为一种功能强大且易于学习的编程语言,被广泛用于网络爬虫的开发。本文将详细介绍Python爬虫所需的技术及其原理,并提供相关的代码案例。
1. HTTP请求与响应
在爬取网页数据之前,我们需要了解HTTP协议,它是在Web上进行数据交互的基础协议。HTTP请求与响应是爬虫工作的基础,我们需要了解它们的结构和交互方式。
1.1 HTTP请求
HTTP请求由请求行、请求头和请求体组成。其中,请求行包括请求方法、请求的URL和协议版本;请求头包含了用于描述请求的各种信息;请求体是可选项,用于传输请求的数据。下面是一个HTTP请求的示例:
GET /path/to/resource HTTP/1.1 Host: www.example.com User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8 ...
在Python中,我们可以使用requests
库发送HTTP请求。下面是一个使用requests
库发送GET请求的示例代码:
import requestsurl = 'http://www.example.com' response = requests.get(url) print(response.text)
1.2 HTTP响应
HTTP响应由响应行、响应头和响应体组成。响应行包含了响应的状态码和状态消息;响应头包含了用于描述响应的各种信息;响应体是实际返回的数据。下面是一个HTTP响应的示例:
HTTP/1.1 200 OK Content-Type: text/html; charset=utf-8 Content-Length: 1234 ... <html> ... </html>
在Python中,我们可以使用requests
库获取HTTP响应。下面是一个获取HTTP响应的示例代码:
import requestsurl = 'http://www.example.com' response = requests.get(url) print(response.status_code) print(response.headers) print(response.text)
2. 网页解析技术
爬虫需要从网页中提取有用的数据,而网页通常采用HTML或XML格式存储。为了解析网页,我们可以使用以下几种技术。
2.1 正则表达式
正则表达式是一种强大的文本匹配技术,我们可以使用它来提取网页中的数据。例如,我们可以使用正则表达式提取HTML中的所有链接。
下面是一个使用正则表达式提取HTML中的链接的示例代码:
import rehtml = '< a href=" ">Example</ a>' links = re.findall('< a href="([^"]*)">([^<]*)</ a>', html) for link in links:print(link[0], link[1])
2.2 XPath
XPath是一种用于在XML文档中定位节点的语言,它可以与HTML文档一样使用。我们可以使用XPath提取网页中的数据。例如,我们可以使用XPath提取HTML中的所有链接。
下面是一个使用XPath提取HTML中的链接的示例代码(需要使用lxml
库):
from lxml import etreehtml = '< a href="http://www.example.com">Example</ a>' tree = etree.HTML(html) links = tree.xpath('//a') for link in links:print(link.get('href'), link.text)
2.3 BeautifulSoup
BeautifulSoup是一个HTML和XML解析库,提供了简单灵活的API。我们可以使用BeautifulSoup解析网页并提取数据。
下面是一个使用BeautifulSoup解析HTML并提取链接的示例代码(需要使用beautifulsoup4
库):
from bs4 import BeautifulSouphtml = '< a href="http://www.example.com">Example</ a>' soup = BeautifulSoup(html, 'html.parser') links = soup.find_all('a') for link in links:print(link.get('href'), link.text)
2.4 提取数据
有了解析后的HTML内容,我们可以根据具体的需求,使用CSS选择器或XPath表达式来定位和提取所需的数据。
下面示范了使用BeautifulSoup提取网页中所有超链接的代码:
links = soup.select('a') for link in links:href = link['href']text = link.get_text()print(href, text)
在这个示例中,我们使用soup.select()
方法配合CSS选择器字符串'a'
,选取网页中所有的<a>
标签。然后使用link['href']
和link.get_text()
分别提取超链接的URL和文字内容。
2.5 数据存储与再处理
爬虫获取到数据后,通常需要将其保存起来供后续处理和分析。常见的存储方式有保存为文件(如CSV、JSON格式),或者存储到数据库中。
以下是一个使用csv库将提取的数据保存为CSV文件的示例代码:
import csvdata = [['url', 'text'], [href, text]] with open('output.csv', 'w', newline='') as file:writer = csv.writer(file)writer.writerows(data)
在这个示例中,我们首先准备好要保存的数据data
,其中包含了提取到的URL和文字内容。然后使用csv.writer()
和writerows()
方法将数据写入到CSV文件中。
3. 爬虫框架
在实际的爬虫开发中,我们通常会使用一些爬虫框架,它们提供了更高级别的抽象和更方便的功能。以下是一些常用的Python爬虫框架。
3.1 Scrapy
Scrapy是一个快速、可扩展且高级别的Web爬取框架。它提供了强大的抓取功能和数据处理能力,使爬虫开发更加高效。下面是一个使用Scrapy爬取网页的示例代码:
import scrapyclass MySpider(scrapy.Spider):name = 'example.com'start_urls = ['http://www.example.com']def parse(self, response):# 处理响应# 提取数据# 发送更多请求pass
3.2 BeautifulSoup + requests
BeautifulSoup和requests的组合是另一种常用的爬虫开发方式。使用BeautifulSoup解析网页,使用requests发送HTTP请求。
下面是一个使用BeautifulSoup和requests爬取网页的示例代码:
import requests from bs4 import BeautifulSoupurl = 'http://www.example.com' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 处理页面,提取数据
3.3 Selenium
Selenium是一种自动化浏览器工具,可以模拟浏览器行为。它通常与浏览器驱动一起使用,如ChromeDriver。使用Selenium可以解决一些JavaScript渲染的网页爬取问题。
下面是一个使用Selenium模拟浏览器爬取网页的示例代码(需要使用selenium
库):
from selenium import webdriverdriver = webdriver.Chrome('path/to/chromedriver') driver.get('http://www.example.com') # 处理页面,提取数据 driver.quit()
4. 其他
除了了解基本的爬虫工作原理,还需要掌握一些相关的技术,以便更好地应对各种复杂情况。下面是几个常用的技术要点:
4.1 User-Agent伪装
为了防止网站屏蔽爬虫,我们可以在发送HTTP请求时设置User-Agent头部,将其伪装成浏览器的请求。这样可以减少被服务器识别为爬虫的概率。
Python requests库可以通过设置headers
参数来添加自定义的HTTP头部。
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3' } response = requests.get(url, headers=headers)
4.2 反爬虫策略与解决方法
为了防止被爬虫抓取数据,网站可能会采取一些反爬虫策略,如限制请求频率、设置验证码、使用动态加载等。对于这些情况,我们可以采取以下解决方法:
-
限制请求频率:可以通过设置合适的时间间隔来控制请求的频率,避免过快访问网站。
-
验证码识别:可以使用第三方的验证码识别库(如Tesseract-OCR)来自动识别并输入验证码。
-
动态加载页面:对于使用JavaScript动态加载的页面,可以使用Selenium库模拟浏览器行为进行处理。
4.3 网页登录与Session管理
有些网站需要登录后才能获取到所需的数据。在这种情况下,我们可以通过模拟登录行为,发送POST请求并记录登录后的Session信息,以便后续的数据访问。
下面是一个使用requests库模拟登录的示例代码:
import requestslogin_url = 'https://example.com/login' data = {'username': 'your_username','password': 'your_password' } response = requests.post(login_url, data=data) session = response.cookiesdata_url = 'https://example.com/data' response = requests.get(data_url, cookies=session) data = response.text
在这个示例中,我们首先发送POST请求模拟登录,将用户名和密码作为表单数据data
发送给登录页面login_url
,并保存返回的Session信息。
然后我们可以使用requests.get()
方法发送GET请求,同时将保存的Session信息作为cookies
参数传入,以便获取登录后的数据。
5. 实例:爬取简书网站文章信息
为了更好地演示Python爬虫的技术和原理,我们选取了简书网站作为示例。我们将爬取简书网站中的热门文章列表,提取出每篇文章的标题、作者和链接。
以下是完整的实现代码:
import requests from bs4 import BeautifulSoup# 发送HTTP请求 url = 'https://www.jianshu.com' response = requests.get(url) html = response.text# 解析HTML内容 soup = BeautifulSoup(html, 'html.parser')# 提取数据 articles = soup.select('.note-list li')data = [] for article in articles:title = article.select('a.title')[0].string.strip()author = article.select('.name')[0].string.strip()href = 'https://www.jianshu.com' + article.select('a.title')[0]['href']data.append([title, author, href])# 数据存储 import csv with open('jianshu_articles.csv', 'w', newline='', encoding="utf-8") as file:writer = csv.writer(file)writer.writerows(data)
在这个示例中,我们首先发送GET请求获取简书网站的HTML内容,然后使用BeautifulSoup库进行解析。
接着,我们使用CSS选择器字符串.note-list li
选取所有文章的外层容器,并使用CSS选择器和字典键值对的方式提取文章的标题、作者和链接。
最后,我们采用CSV格式将提取的数据保存到了名为jianshu_articles.csv
的文件中。
结语
本文详细介绍了Python爬虫所需的技术及其原理,包括HTTP请求与响应、网页解析技术和爬虫框架。通过掌握这些技术,我们可以有效地开发出强大且高效的Python爬虫。希望本文能对你理解和掌握Python爬虫有所帮助。
请注意,在进行网络爬虫时,需要遵守网站的使用条款,并遵守相关法律法规。同时,合理使用爬虫技术,不对网络资源进行滥用和破坏。
相关文章:
Python爬虫技术及其原理探秘
导言 随着互联网的发展,大量的数据被存储在网络上,而我们需要从中获取有用的信息。Python作为一种功能强大且易于学习的编程语言,被广泛用于网络爬虫的开发。本文将详细介绍Python爬虫所需的技术及其原理,并提供相关的代码案例。…...
堆和栈的区别及应用场景
堆和栈的区别及应用场景 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在计算机科学和编程领域,堆(Heap)和栈(…...
vant的dialog触发了其他overlay
原代码: <!-- dialog --><van-dialog v-model"showTipsDialog" title"温馨提示"><p>dialog内容</p></van-dialog><!-- overlay --><van-overlay style"display: flex" :show"showLoadingOverlay&q…...
Linux驱动开发笔记(十二)并发与竞争
文章目录 前言一、并发与竞争的引入1.1 并发1.2 竞争1.3 解决方法 二、原子操作2.1 概念2.2 使用方法 三、自旋锁3.1 概念3.2 使用方法3.3 自旋锁死锁 四、信号量4.1 概念4.2 使用方法 五、互斥锁5.1 概念5.2 使用方法 前言 Linux的子系统我们已经大致学习完了,笔者…...
【Mac】Listen 1 for Mac(最强的音乐搜索工具)软件介绍
软件介绍 Listen 1 for Mac 是一款非常方便的音乐播放软件,主要功能是集成多个音乐平台,让用户可以方便地搜索、播放和管理音乐。它是一个用 Python 语言开发的免费开源综合音乐搜索工具项目,最大的亮点在于可以搜索和播放来自网易云音乐&am…...
nginx 1024 worker_connections are not enough while connecting to upstream
现象 请求api响应慢,甚至出现504 gateway timeout,重启后端服务不能恢复,但重启nginx可以恢复。 解决方案 worker_connections使用了默认值 1024,当流量增长时,导致连接不够 在nginx.conf中修改连接数就可以了&…...
在Ubuntu 16.04上安装和配置Elasticsearch的方法
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 简介 Elasticsearch 是一个用于实时分布式搜索和数据分析的平台。它因易用性、强大功能和可扩展性而备受欢迎。 Elasticsearch 支持 R…...
C#给SqlSugar封装一个单例类
.NET兼职社区 可以直接用,轻量方便,无需重复造轮子。 这里只对CRUD进行封装,我的应用比较简单。 using SqlSugar; using System.Collections.Generic;namespace MusicApp.Assist {internal class SqlSugarAssist{private static readonly ob…...
Postman接口测试工具的原理及应用详解(六)
本系列文章简介: 在当今软件开发的世界中,接口测试作为保证软件质量的重要一环,其重要性不言而喻。随着前后端分离开发模式的普及,接口测试已成为连接前后端开发的桥梁,确保前后端之间的数据交互准确无误。在这样的背景…...
【算法 之插入排序 原理及案例】
插入排序原理: 插入排序(Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常…...
第一节:如何开发第一个spring boot3.x项目(自学Spring boot 3.x的第一天)
大家好,我是网创有方,从今天开始,我会记录每篇我自学spring boot3.x的经验。只要我不偷懒,学完应该很快,哈哈,更新速度尽可能快,想和大佬们一块讨论,如果需要讨论的欢迎一起评论区留…...
JS逆向:由 words 、sigBytes 引发的一系列思考与实践
【作者主页】:小鱼神1024 【擅长领域】:JS逆向、小程序逆向、AST还原、验证码突防、Python开发、浏览器插件开发、React前端开发、NestJS后端开发等等 在做JS逆向时,你是否经常看到 words 和 sigBytes 这两个属性呢,比如ÿ…...
计算机的错误计算(十五)
摘要 介绍历史上由于计算精度问题引起的灾难或事件。 今天换个话题,说说历史上曾经发生过的一些事件。 1961 年 , 美国麻省理工学院气象学家洛伦兹在仿真天气预报时 , 将 0.506127 舍入到 0.506 , 所得计算结果大相径庭 ! 这种“差之毫厘 , 谬以千里”的现象…...
制作img文件
安装软件包 sudo apt-get install dosfstools dump parted kpartx 创建空白img文件 sudo dd if/dev/zero ofraspberrypi.img bs1M count4000 给img文件分区 sudo parted raspberrypi.img --script -- mklabel msdos sudo parted raspberrypi.img --script -- mkpart primar…...
GB28181视频汇聚平台EasyCVR接入Ehome设备视频播放出现异常是什么原因?
多协议接入视频汇聚平台EasyCVR视频监控系统采用了开放式的架构,系统可兼容多协议接入,包括市场标准协议:国标GB/T 28181协议、GA/T 1400协议、JT808、RTMP、RTSP/Onvif协议;以及主流厂家私有协议及SDK,如:…...
Java利用poi实现word,excel,ppt,pdf等各类型文档密码检测
介绍 最近工作上需要对word,excel,ppt,pdf等各类型文档密码检测,对文件进行分类,有密码的和没密码的做区分。查了一堆资料和GPT都不是很满意,最后东拼西凑搞了个相对全面的检测工具代码类,希望能给需要的人带来帮助。 说明 这段…...
顺序表与链表学习笔记
顺序表及其结构定义 (1)结构定义 顺序存储: 顺序表的元素按顺序存储在一块连续的内存区域中,每个元素占用相同大小的存储空间。通过数组实现,每个元素可以通过下标快速访问。 存储密度高: 因为顺序表使用…...
2.SQL注入-字符型
SQL注入-字符型(get) 输入kobe查询出现id和邮箱 猜测语句,字符在数据库中需要用到单引号或者双引号 select 字段1,字段2 from 表名 where usernamekobe;在数据库中查询对应的kobe,根据上图对应上。 select id,email from member where usernamekobe;编写payload语…...
在Ubuntu 14.04上安装和配置Elasticsearch的方法
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 简介 Elasticsearch 是一个用于实时分布式搜索和数据分析的平台。它因易用性、强大功能和可扩展性而备受欢迎。 Elasticsearch 支持 R…...
C++:inline关键字nullptr
inline关键字 C中inline使用关键点强调 (1)inline是一种“用于实现的关键字”,而不是一种“用于声明的关键字”,所以关键字 inline 必须与函数定义体放在一起,而不是和声明放在一起 (2)如果希望在多个c文件中使用,则inline函数应…...
数字信号处理实验三(IIR数字滤波器设计)
IIR数字滤波器设计(2学时) 要求: 产生一复合信号序列,该序列包含幅度相同的28Hz、50Hz、100Hz、150Hz的单音(单频)信号;其中,50Hz及其谐波为工频干扰(注:采样…...
Why is Kafka fast?(Kafka性能基石)
Kafka概述 Why is kafka fast? 思考一下,当我们在讨论Kafka快的时候我们是在谈论什么呢?What does it even mean that Kafka is fast? 我们是在谈论kafka的低延迟(low latency)还是在讨论吞吐量(through…...
Linux下的SSH详解及Ubuntu教程
前言 SSH(Secure Shell)是一种用于计算机之间安全通信的协议,广泛应用于远程登录、系统管理和文件传输等场景。本文将详细介绍SSH在Linux系统(特别是Ubuntu)下的使用,包括安装、配置、密钥管理和常见应用&…...
MobPush HarmonyOS NEXT 版本集成指南
开发工具:DevEco Studio 集成方式:在线集成 HarmonyOS API支持:> 11 集成前准备 注册账号 使用MobSDK之前,需要先在MobTech官网注册开发者账号,并获取MobTech提供的AppKey和AppSecret,详情可以点击查…...
什么是封装?为什么要封装?
什么是封装? 封装是计算机科学中的一个重要概念,尤其在面向对象编程(OOP)中占据核心地位。封装主要指的是将数据(属性)和对这些数据的操作(方法)组合在一个单元中(我们称…...
远程桌面无法复制粘贴文件到本地怎么办?
远程桌面不能复制粘贴问题 Windows远程桌面为我们提供了随时随地访问文件和数据的便捷途径,大大提升了工作和生活的效率。然而,在使用过程中,我们也可能遇到一些问题。例如,在通过远程桌面传输文件时,常常会出现无法复…...
LeetCode 207. 课程表
思路:这是一道拓扑排序问题,拓扑排序听起来可能有点复杂,但实际上它是个相当直观的概念。想象一下,你有很多事情要做,但有些事情必须在另一些事情完成之后才能开始,就像你得先穿上袜子再穿鞋子 拓扑排序就…...
数据结构历年考研真题对应知识点(树的基本概念)
目录 5.1树的基本概念 5.1.2基本术语 【森林中树的数量、边数和结点数的关系(2016)】 5.1.3树的性质 【树中结点数和度数的关系的应用(2010、2016)】 【指定结点数的三叉树的最小高度分析(2022)】 5.1…...
Pytorch和Tensorflow安装【Win和Linux】
Ubuntu/win安装Pytorch和Tensorflow 说明: 这两种框架的搭建,均基于Anaconda进行搭建。先在系统中安装Anaconda软件。 一、Pytorch的搭建 windows安装 (1)搭建参考官网给的命令,pytorch官网 (2)下载地址:https://download.pytorch.org/whl/torch_stable.html 从上述…...
筑算网基石 创数智未来|锐捷网络闪耀2024 MWC上海
2024年6月26日至28日,全球科技界瞩目的GSMA世界移动大会(MWC 上海)在上海新国际博览中心(SNIEC)盛大召开。作为行业领先的网络解决方案提供商,锐捷网络以“筑算网基石 创数智未来”为主题,带来了…...
番禺网站建设知乎/日本产品和韩国产品哪个好
网上解决办法都是用淘宝镜像,但我先切换了镜像,安装还是慢,最后发现了一个比较快的方案。 打开cmd 先装一个cnpm,指向淘宝npm仓库 npm install -g cnpm --registryhttps://registry.npm.taobao.org再安装vue cli npm install -g…...
wordpress个人博客绅士模板/可靠的网站优化
最近在做公司PC端低版本浏览器兼容性问题,现将检测浏览器版本号接口封装一下,和大家一起分享交流下。 browserCheck.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>浏览器…...
ecshop做的小说网站/免费网络推广100种方法
2020 无疑是特殊的一年,而 AI 在开年的这场”战疫“中表现出了惊人的力量。站在“新十年”的起点上,CSDN【百万人学AI】评选活动正式启动。本届评选活动在前两届的基础上再度升级,设立了「AI优秀案例奖Top 30」、「AI新锐公司奖Top 10」、「A…...
兼职做页面的网站/谷歌排名优化
InnoDB中的多版本并发控制(MVCC) MVCC (Multiversion Concurrency Control),多版本并发控制。 顾名思义, MVCC是通过数据行的多个版本管理来实现数据库的并发控制。这项技术使得在InnoDB的事务隔离级别下执行一致性读操作有了保证。换言之,就是为了查询一…...
景观设计公司理念/南宁百度seo排名优化
假设都不太安全,但是我很确信如果我大声宣布小孩爱玩具,你一定就会同意了。是的,他们也喜欢卡通。现在又出现了一个趋势就是:他们还喜欢iPad。有人说这曾是2010年出现的新玩具Y Combinator下63家企业中的一个新创业公司今天出来鸟…...
兰州电商网站建设/营销推广是干什么的
HTML元素那些事 在WEB开发中两个主要人物就是document类型和element类型。HTMLElement继承自Element并添加了一些属性。在实际的开发程序中总是通过HTML元素的属性去办一些事,有时候标准属性满足不了需求,就要添加一些自定义属性来来办事。如下ÿ…...