当前位置: 首页 > news >正文

树莓派4B_OpenCv学习笔记15:OpenCv定位物体实时坐标

今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi)

 本人所用树莓派4B 装载的系统与版本如下:

 版本可用命令 (lsb_release -a) 查询:

 Opencv 版本是4.5.1:

今日学习 OpenCv定位物体实时位置,代码来源是创乐博,这里作学习解释

文章提供测试代码讲解,整体代码贴出、测试效果图

目录

完整实例代码贴出:

实验过程:

获取小球的准确HSV色域:

将上一步得到的HSV色域替换在程序中:

实验结果截图与视频:

网上查阅资料贴出:


完整实例代码贴出:

这个代码实现了圈出指定HSV色彩范围的圆形物体,并打印出其质心在视频帧上的坐标

并且有LED相关的亮灭操作用于指示是否检测到目标

# -*- coding: utf-8 -*-from __future__ import print_function     # 导入print函数,确保在Python 2和Python 3中都能以兼容的方式使用print。  
from imutils.video import VideoStream # 从imutils库中导入VideoStream,用于从摄像头捕获视频帧。 
import imutils                                             # 导入imutils库,该库提供了图像和视频处理的实用功能。 
import time
import cv2
import os
import RPi.GPIO as GPIO                          # 导入Raspberry Pi的GPIO库,用于控制GPIO引脚。Led = 21                                                      # 定义一个变量Led,表示连LED的GPIO引脚编号。
GPIO.setwarnings(False)                           # 关闭GPIO库的警告信息。
GPIO.setmode(GPIO.BCM)                       # 设置GPIO引脚编号模式为BCM(Broadcom SOC channel mode)。
GPIO.setup(Led, GPIO.OUT)                     # 设置GPIO引脚Led为输出模式。# 定义一个函数,用于打印对象中心的坐标。
def mapObjectPosition (x, y):print ("[INFO] Object Center coordenates at X0 = {0} and Y0 =  {1}".format(x, y))# 打印一条信息,表示正在等待摄像头预热。 
print("[INFO] waiting for camera to warmup...")
vs = VideoStream(0).start()                     # 创建一个VideoStream对象,并启动它。0表示使用默认的摄像头。  
time.sleep(2.0)                                          # 等待2秒,确保摄像头已经预热完成。colorLower = (9,135,231)                         # 定义HSV颜色空间的下限,用于颜色过滤。
colorUpper = (31,255,255)                       # 定义HSV颜色空间的上限,用于颜色过滤。GPIO.output(Led, GPIO.LOW)                # 将Led引脚设置为低电平,关闭LED。 
ledOn = False                                           # 定义一个变量ledOn,表示LED是否已打开。while True:frame = vs.read()                                                        # 从VideoStream中读取一帧图像。  frame = imutils.resize(frame, width=500)               # 调整帧的大小,使其宽度为500像素。frame = imutils.rotate(frame, angle=0)                   # 旋转帧(虽然在这里旋转角度为0,所以实际上没有旋转)。hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)  # 将帧从BGR颜色空间转换为HSV颜色空间。mask = cv2.inRange(hsv, colorLower, colorUpper)# 使用定义的颜色范围创建一个颜色掩码。mask = cv2.erode(mask, None, iterations=2)         # 对掩码进行腐蚀操作,减少噪声。mask = cv2.dilate(mask, None, iterations=2)         # 对掩码进行膨胀操作,确保对象区域被完全覆盖# 在掩码上查找轮廓。 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = cnts[0] if imutils.is_cv2() else cnts[1]            # 根据OpenCV的版本(2或3/4),选择正确的轮廓列表。 center = None                                                            # 初始化一个变量center,用于存储对象的中心坐标。 if len(cnts) > 0:       # 如果找到了轮廓...  c = max(cnts, key=cv2.contourArea)               # 找到面积最大的轮廓。((x, y), radius) = cv2.minEnclosingCircle(c)     # 找到该轮廓的最小外接圆,并获取其圆心和半径。M = cv2.moments(c)                                         # 计算轮廓c的矩,矩是一组值,可以从中推导出对象的形状特征,如面积、质心等。 center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # 使用矩来计算轮廓的质心(或称为中心),并将其存储在变量center中。 if radius > 10:  # 如果找到的最小外接圆的半径大于10(一个阈值,可以根据实际情况调整):cv2.circle(frame, (int(x), int(y)), int(radius),(0, 255, 255), 2)  # 在原帧上绘制找到的最小外接圆,颜色为青色(BGR中的(0, 255, 255)),线宽为2。cv2.circle(frame, center, 5, (0, 0, 255), -1)  # 在原帧上绘制轮廓的质心(或中心),颜色为红色(BGR中的(0, 0, 255)),并填充。mapObjectPosition(int(x), int(y))             # 调用之前定义的函数,打印对象中心的坐标。  if not ledOn:                                              # 如果LED灯之前没打开(ledOn为False),则将其打开,并将ledOn设置为True。GPIO.output(Led, GPIO.HIGH)ledOn = Trueelif ledOn:         # 如果没有找到轮廓,但LED灯是打开的(ledOn为True):关闭LED灯,并将ledOn设置为False。GPIO.output(Led, GPIO.LOW)ledOn = Falsecv2.imshow("Frame", frame) # 使用OpenCV的imshow函数显示处理后的帧。key = cv2.waitKey(1) & 0xFF   # 如果按下的键是Esc键(ASCII码为27),则退出循环。  if key == 27:breakprint("\n [INFO] Exiting Program and cleanup stuff \n")  # 打印一条信息,表示程序正在退出并进行清理。  
GPIO.cleanup()                                                                       # 清理GPIO设置,释放资源。
cv2.destroyAllWindows()                                                      # 关闭所有OpenCV打开的窗口。
vs.stop()                                                                                  # 停止VideoStream的捕获。

实验过程:

代码中所用的大部分函数已经在之前的几篇文章提到过了,就不重复解释了:

文章网址如下:

树莓派4B_OpenCv学习笔记9:图片的腐蚀与膨胀-CSDN博客

树莓派4B_OpenCv学习笔记12:OpenCv颜色追踪_画出轨迹_树莓派opencv颜色识别-CSDN博客树莓派4B_OpenCv学习笔记13:OpenCv颜色追踪_程序手动调试HSV色彩空间_检测圆-CSDN博客

获取小球的准确HSV色域:

因为程序中已经存在了寻找最大轮廓圆的处理,因此即使不使用上一节文章的手动调节HSV的处理也没什么大问题,但我这里为了检测更为准确专用,还是加上了上一节代码的HSV微调操作:

文章网址如下:

树莓派4B_OpenCv学习笔记13:OpenCv颜色追踪_程序手动调试HSV色彩空间_检测圆-CSDN博客

拍摄照片获取BGR颜色空间:160    75    13

转换为大致的HSV色彩空间:

再使用之前的颜色小球追踪程序对HSV进行进一步细节调整:

调整前:

[97,100,100]

[117,255,255]

调整后:

[92,189,130]

[117,244,200]

将上一步得到的HSV色域替换在程序中:

实验结果截图与视频:

树莓派4B_OpenCv学习笔记15:OpenCv定位物体

网上查阅资料贴出:

[树莓派基础]11.树莓派OpenCV定位物体的实时位置_哔哩哔哩_bilibili

相关文章:

树莓派4B_OpenCv学习笔记15:OpenCv定位物体实时坐标

今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi) 本人所用树莓派4B 装载的系统与版本如下: 版本可用命令 (lsb_release -a) 查询: Opencv 版本是4.5.1: 今日学习 OpenCv定位物体实时位置,代码来源是…...

MySQL之如何定位慢查询

1、如何定位慢查询 1.1、使用开源工具 调试工具:Arthas 运维工具:Promethuss、Skywalking 1.2、MySQL自带慢日志 慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒&#x…...

Open3D 删除点云中重复的点

目录 一、算法原理1、重叠点2、主要函数二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、重叠点 原始点云克隆一份   构造重叠区域   合并点云获得重叠点 2、主要…...

填报志愿选专业是兴趣重要还是前景重要?

进行专业评估,找到一个适合自己的专业是一件非常困难的事情。在进行专业选择时,身上理想化色彩非常严重的人,会全然不顾及他人的劝阻,义无反顾的以兴趣为主,选择自己热爱的专业。一些较多考虑他人建议,能听…...

python开发基础——day9 函数基础与函数参数

一、初识函数(function) 编程函数!数学函数,里面的是逻辑,功能,而不是套公式 编程函数的作用实现特定操作的一段代码 你现在请客,每个人都点同样的一份吃的,请100个人 1.薯条 2.上校鸡块 3.可乐 那…...

STM32——使用TIM输出比较产生PWM波形控制舵机转角

一、输出比较简介: 只有高级定时器和通用寄存器才有输入捕获/输出比较电路,他们有四个CCR(捕获/比较寄存器),共用一个CNT(计数器),而输出比较功能是用来输出PWM波形的。 红圈部分…...

第十五章 集合(set)(Python)

文章目录 前言一、集合 前言 集合(set)是一个无序的不重复元素序列。 一、集合 set {1, 2, 3, 4}...

面试-javaIO机制

1.BIO BIO:是传统的javaIO以及部分java.net下部分接口和类。例如,socket,http等,因为网络通信同样是IO行为。传统IO基于字节流和字符流进行操作。提供了我们最熟悉的IO功能,譬如基于字节流的InputStream 和OutputStream.基于字符流…...

在.NET Core中,config和ConfigureServices的区别和作用

在.NET Core中,config和ConfigureServices是两个不同的概念,它们在应用程序的启动和配置过程中扮演着不同的角色。 ConfigureServices:这是ASP.NET Core应用程序中的一个方法,位于Startup类的内部。它的作用是配置依赖注入(DI)容器…...

App Inventor 2 如何实现多个定时功能?

1、可以使用多个“计时器”组件。 2、也可以用一个计时器,定时一分钟。也就是一分钟就会触发一次事件执行,定义一个全局数字变量,在事件中递增,用逻辑判断这个变量的值即可完成多个想要定时的任务(о∀о) 代码块请参考&#xf…...

技术驱动的音乐变革:AI带来的产业重塑

📑引言 近一个月来,随着几款音乐大模型的轮番上线,AI在音乐产业的角色迅速扩大。这些模型不仅将音乐创作的门槛降至前所未有的低点,还引发了一场关于AI是否会彻底颠覆音乐行业的激烈讨论。从初期的兴奋到现在的理性审视&#xff0…...

重生之我要学后端0--HTTP协议和RESTful APIs

http和RESTful APIs HTTP协议RESTful APIs设计RESTful API设计实例 HTTP协议 HTTP(超文本传输协议)是用于分布式、协作式和超媒体信息系统的应用层协议。它是网页数据通讯的基础。工作原理简述如下: 客户端请求(Request&#xf…...

深度之眼(二十八)——神经网络基础知识(三)-卷积神经网络

文章目录 一、前言二、卷积操作2.1 填充(padding)2.2 步长2.3 输出特征图尺寸计算2.4 多通道卷积 三、池化操作四、Lenet-5及CNN结构进化史4.1 Lenet-5 一、前言 卷积神经网络–AlexNet(最牛)-2012 Lenet-5-大规模商用(1989) 二、…...

AI Infra简单记录

向量数据库的作用 1. 在AI大模型训练过程中,向量数据库可以有效提升数据检索、特征提取等任务的效率。 2、在AI大模型推理过程中,向量数据库为大模型提供外挂知识库,提升模型时效性与准确性,提供缓存能力,减少调用开…...

三英战吕布 | 第5集 | 温酒斩华雄 | 竖子不足与谋 | 三国演义 | 逐鹿群雄

🙋大家好!我是毛毛张! 🌈个人首页: 神马都会亿点点的毛毛张 📌这篇博客分享的是《三国演义》文学剧本第Ⅰ部分《群雄逐鹿》的第5️⃣集《三英战吕布》的经典语句和文学剧本全集台词 文章目录 1.经典语句2.文学剧本台…...

【C语言】自定义类型:结构体

目录 1. 结构体类型的声明 1.1. 结构的一般声明 1.2. 结构的特殊声明 2. 结构体变量的创建和初始化 3. 结构体的自引用 4. 结构体内存对齐 4.1. 对其规则(面试考点) 4.2. 为什么存在内存对齐? 4.2.1. 平台原因(移植…...

算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 决策树是一种简单直观的机器学习算法,它广泛应用于分类和回归问题中。它的核心思想是将复杂的决策过程分解成一系列简单的决…...

[每周一更]-(第103期):GIT初始化子模块

文章目录 初始化和更新所有子模块分步骤操作1. 克隆包含子模块的仓库2. 初始化子模块3. 更新子模块 查看子模块状态提交子模块的更改处理子模块路径错误的问题 该问题的缘由是因为:在写某些代码的时候,仓库中有些文件夹,只提交了文件夹名称到…...

单例模式---线程安全实现

文章目录 1.单例模式的特点😊2.单例模式两种实现🤣🤗😊2.1 饿汉式2.2 懒汉式 3.传统单例模式的线程安全问题4.解决方法4.1静态局部变量4.2加锁4.3双重检查锁(DCL)4.4pthread_once 1.单例模式的特点&#x1…...

Agent技术在现代软件开发与应用中的探索

一、引言 随着计算机科学的快速发展,Agent技术作为人工智能和分布式计算领域的重要分支,已经渗透到软件开发的各个方面。Agent技术通过赋予软件实体自主性和交互性,使得软件系统能够更加智能、灵活地响应环境变化和用户需求。本文将对Agent技…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

网络编程(UDP编程)

思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

【Oracle】分区表

个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...