还不知道工业以太网和现场总线区别???
工业以太网
工业以太网是一种专为工业环境设计的网络通信技术,它基于标准的以太网技术,但针对工业应用进行了优化。工业以太网能够适应高温、低温、防尘等恶劣工业环境,采用TCP/IP协议,与IEEE 802.3标准兼容,并在应用层加入特定协议以满足工业自动化的需求。工业以太网的优势在于其统一性、集成性和成本效益,能够实现企业信息网络和控制网络的统一,支持快速的网络集成,并且硬件升级范围广,价格低廉。

现场总线
现场总线技术起源于20世纪80年代末至90年代初,旨在实现工业自动化中设备间的互联和数据交换。现场总线是一种实时控制通信网络,连接自动化底层的现场控制器和智能仪表设备,遵循ISO/OSI开放系统互联参考模型的全部或部分通信协议。现场总线技术具有多种标准,如FF、HART、CAN等,每种标准都有其特点和应用范围,但由于通信协议的不同,导致市场呈现碎片化。

技术特点
工业以太网的技术特点:
- 环境适应性:能够适应工业环境中的高温、低温和防尘等条件。
- 统一性:采用TCP/IP协议,与IEEE 802.3标准兼容,易于与现有的IT基础设施集成。
- 实时性:通过实时工业以太网技术如PROFINET、EtherCAT等,满足高速实时性数据通信的需求。
- 成本效益:硬件升级范围广,价格低廉,得到众多厂商支持。
现场总线的技术特点:
- 实时性:简化的ISO/OSI模型,实现更低的通信延迟和更快的速度。
- 多样性:存在多种现场总线技术,如FF、HART、CAN等,每种技术有其特定的应用范围。
- 标准化:尽管存在多种标准,IEC 61158等标准试图实现统一,但市场依然碎片化。
- 成本效益:相对于工业以太网,某些现场总线技术可能具有更低的成本。
应用场景

工业以太网的应用场景:
- 大型自动化系统:适用于需要高速、大容量数据传输的大型工业自动化项目。
- 信息集成:在工厂管理、车间监控等信息集成领域有广泛应用,实现企业信息网络和控制网络的统一。
- 实时控制:通过实时工业以太网技术,满足高速实时性数据通信的需求。
现场总线的应用场景:
- 中小型自动化项目:适用于预算有限、系统规模较小的项目,提供经济实惠的解决方案。
- 设备互联:在需要设备互联互通但对实时性和带宽要求不高的场合,现场总线是合适的选择。
- 特定行业应用:某些特定行业或应用可能更适合使用特定的现场总线技术,如HART在过程控制中的应用。
结论
工业以太网和现场总线各有优势和适用场景。工业以太网以其环境适应性、统一性和实时性在大型自动化系统中占据主导地位,而现场总线则以其多样性和成本效益在中小型项目或特定行业应用中得到广泛应用。随着工业4.0和智能制造的发展,两者将继续在工业自动化领域发挥重要作用,为用户提供灵活、高效的通信解决方案。
作者介绍:
90后资深架构师,深耕工业可视化,数字化转型,深度学习技术在工业中的应用。深入研究Web3D,SCADA ,深度学习开发应用。开发语言技能JAVA/C#/Python/Golang/Vue3/TypeScript, 关注【工业可视化】带你一起学~
相关文章:
还不知道工业以太网和现场总线区别???
工业以太网 工业以太网是一种专为工业环境设计的网络通信技术,它基于标准的以太网技术,但针对工业应用进行了优化。工业以太网能够适应高温、低温、防尘等恶劣工业环境,采用TCP/IP协议,与IEEE 802.3标准兼容,并在应用层…...
量化交易 - 策略回测
策略回测 1、什么是策略回测?2、策略回测的作用3、策略回测系统概述3.1策略回测中相关的指标介绍3.2量化交易策略的资金容量3.3 完整的策略回测系统包含哪些内容 1、什么是策略回测? 策略回测,也称之为策略回溯测试,是指利用交易…...
Java--选择排序
思想 从左向右遍历数组,让每个数组元素依次作为基准,将基准数组扫描一次,若有元素比基准小则标记这个元素,若后续元素存在比此元素更小的,则标记更小的元素,遍历完此次数组之后,交换基准和标记数…...
Python基础之模块和包
文章目录 1 模块和包1.1 模块和包1.1.1 模块1.1.2 包1.1.3 简单使用 1.2 import 语句1.2.1 import1.2.2 from … import 语句1.2.3 from … import * 语句 1.4 深入模块1.4.1 模块符号表1.4.2 __name__属性1.4.3 dir() 函数1.4.4 作用域 1.5 常用内置模块 1 模块和包 1.1 模块…...
基于SpringBoot漫画网站系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,…...
Mysql----表的约束
提示:以下是本篇文章正文内容,下面案例可供参考 一、表的约束 表的约束:表中一定要有约束,通过约束让插入表中的数据是符合预期的。它的本质是通过技术手段,让程序员插入正确的数据,约束的最终目标是保证…...
如何用 PHP 实现一个自定义爬虫框架
随着互联网的不断发展,信息量爆炸式增长,获取有价值的信息已经成为了许多人的需求。在这样的大环境下,爬虫技术逐渐兴起,成为了大数据时代的重要工具之一。爬虫技术的应用十分广泛,其可以用于网络舆情监测、数据分析、…...
【机器学习】机器学习的重要方法——强化学习:理论,方法与实践
目录 一、强化学习的核心概念 二、强化学习算法的分类与示例代码 三.强化学习的优势 四.强化学习的应用与挑战 五、总结与展望 强化学习:理论,方法和实践 在人工智能的广阔领域中,强化学习(Reinforcement Learning, RL&…...
Linux磁盘监控思路分析
磁盘监控原理 设备又名I/O设备,泛指计算机系统中除主机以外的所有外部设备。 1.1 计算机分类 1.1.1 按照信息传输速度分: 1.低速设备:每秒传输信息仅几个字节或者百个字节,如:键盘、鼠标等 2.中速设备:…...
pc端制作一个顶部固定的菜单栏
效果 hsl颜色 hsl颜色在css中比较方便 https://www.w3school.com.cn/css/css_colors_hsl.asp 色相(hue)是色轮上从 0 到 360 的度数。0 是红色,120 是绿色,240 是蓝色。饱和度(saturation)是一个百分比值…...
ONLYOFFICE 8.1版本桌面编辑器深度体验:创新功能与卓越性能的结合
ONLYOFFICE 8.1版本桌面编辑器深度体验:创新功能与卓越性能的结合 随着数字化办公的日益普及,一款高效、功能丰富的办公软件成为了职场人士的必备工具。ONLYOFFICE团队一直致力于为用户提供全面而先进的办公解决方案。最新推出的ONLYOFFICE 8.1版本桌面编…...
使用Java连接数据库并且执行数据库操作和创建用户登录图形化界面(2)
(1)在student数据库上创建一个用户表tb_account,该表包含用户id,用户名和密码。 字段名称 数据类型 注释 约束 user_id Char(8) 用户id 主键 user_name char(10) 用户名 不能为空 password char(10) 密码 默认值&a…...
socket编程常见操作
1、连接的建立 分为两种:服务端处理接收客户端的连接;服务端作为客户端连接第三方服务 //作为服务端 int listenfd socket(AF_INET, SOCK_STREAM, 0); bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr))) listen(listenfd, 10); //…...
springcloud-config git配置源加载(部署公钥问题)
使用gitUrl作为配置源 gitee 或者github 中有类似于发布密钥的功能,允许通过私钥只读访问指定的仓库,文档中说的是 限制了git的操作为pull 和 clone。生成私钥的方式文档连接在此 https://gitee.com/help/articles/4181#article-header0 spring config只…...
华为OD机考题HJ24 合唱队
前言 应广大同学要求,开始以OD机考题作为练习题,看看算法和数据结构掌握情况。有需要练习的可以关注下。 描述 N 位同学站成一排,音乐老师要请最少的同学出列,使得剩下的 K 位同学排成合唱队形。 设𝐾K位同学从左到…...
基于bootstrap的12种登录注册页面模板
基于bootstrap的12种登录注册页面模板,分三种类型,默认简单的登录和注册,带背景图片的登录和注册,支持弹窗的登录和注册页面html下载。 微信扫码下载...
【劳德巴赫 Trace32 高阶系列 3.1 -- trace32 svf 文件操作与 InitState】
文章目录 SVF InitStateJTAG 状态机JTAG Test-Logic-ResetJTAG Run-Test-IdleSVF InitState Format: JTAG.PROGRAM.SVF <file> [/<option>] <option>: IRPRE <value>IRPOST <value>DRPRE <value>DRPOST <value<...
爬虫知识:补环境相关知识
学习目标:知道为什么要补环境,知道要补什么环境(使用Proxy检测)。没有讲解怎么补 本章没有动手去实操,只是纯理论知识 补环境介绍 DOM与BOM DOM主要关注文档内容和结构,而BOM关注浏览器窗口和功能。在浏…...
Crontab命令详解:轻松驾驭Linux定时任务,提升系统效率
🌈 个人主页:danci_ 🔥 系列专栏:《设计模式》《MYSQL》 💪🏻 制定明确可量化的目标,坚持默默的做事。 引言: crond是Linux系统中用来定期执行命令或指定程序任务的一种服务或软件…...
【Python】探索 Pandas 中的 where 方法:条件筛选的利器
那年夏天我和你躲在 这一大片宁静的海 直到后来我们都还在 对这个世界充满期待 今年冬天你已经不在 我的心空出了一块 很高兴遇见你 让我终究明白 回忆比真实精彩 🎵 王心凌《那年夏天宁静的海》 在数据分析中,Pandas 是一个强大且…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
