当前位置: 首页 > news >正文

Kmeans聚类算法-python

import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 计算欧拉距离
def calcDis(dataSet, centroids, k):
    clalist=[]
    for data in dataSet:
        diff = np.tile(data, (k, 1)) - centroids  #相减   (np.tile(a,(2,1))就是把a先沿x轴复制1倍,即没有复制,仍然是 [0,1,2]。 再把结果沿y方向复制2倍得到array([[0,1,2],[0,1,2]]))
        squaredDiff = diff ** 2     #平方
        squaredDist = np.sum(squaredDiff, axis=1)   #和  (axis=1表示行)
        distance = squaredDist ** 0.5  #开根号
        clalist.append(distance) 
    clalist = np.array(clalist)  #返回一个每个点到质点的距离len(dateSet)*k的数组
    return clalist

# 计算质心
def classify(dataSet, centroids, k):
    # 计算样本到质心的距离
    clalist = calcDis(dataSet, centroids, k)
    # 分组并计算新的质心
    minDistIndices = np.argmin(clalist, axis=1)    #axis=1 表示求出每行的最小值的下标
    newCentroids = pd.DataFrame(dataSet).groupby(minDistIndices).mean() #DataFramte(dataSet)对DataSet分组,groupby(min)按照min进行统计分类,mean()对分类结果求均值
    newCentroids = newCentroids.values
 
    # 计算变化量
    changed = newCentroids - centroids
 
    return changed, newCentroids

# 使用k-means分类
def kmeans(dataSet, k):
    # 随机取质心
    centroids = random.sample(dataSet, k)
    
    # 更新质心 直到变化量全为0
    changed, newCentroids = classify(dataSet, centroids, k)
    while np.any(changed != 0):
        changed, newCentroids = classify(dataSet, newCentroids, k)
 
    centroids = sorted(newCentroids.tolist())   #tolist()将矩阵转换成列表 sorted()排序
 
    # 根据质心计算每个集群
    cluster = []
    clalist = calcDis(dataSet, centroids, k) #调用欧拉距离
    minDistIndices = np.argmin(clalist, axis=1)  
    for i in range(k):
        cluster.append([])
    for i, j in enumerate(minDistIndices):   #enymerate()可同时遍历索引和遍历元素
        cluster[j].append(dataSet[i])
        
    return centroids, cluster
 
# 创建数据集
def createDataSet():
    return [[1, 1], [1, 2], [2, 1], [6, 4], [6, 3], [5, 4]]

if __name__=='__main__': 
    dataset = createDataSet()
    centroids, cluster = kmeans(dataset, 2)
    print('质心为:%s' % centroids)
    print('集群为:%s' % cluster)
    for i in range(len(dataset)):
      plt.scatter(dataset[i][0],dataset[i][1], marker = 'o',color = 'green', s = 40 ,label = '原始点')
                                                    #  记号形状       颜色      点的大小      设置标签
      for j in range(len(centroids)):
        plt.scatter(centroids[j][0],centroids[j][1],marker='x',color='red',s=50,label='质心')
        plt.show()

 

相关文章:

Kmeans聚类算法-python

import random import pandas as pd import numpy as np import matplotlib.pyplot as plt # 计算欧拉距离 def calcDis(dataSet, centroids, k): clalist[] for data in dataSet: diff np.tile(data, (k, 1)) - centroids #相减 (np.tile(a,(2,1))就是把…...

Linux|奇怪的知识|locate命令---文件管理小工具

前言: Linux的命令是非常多的,有一些冷门的命令,虽然很少用,但可能会有意想不到的功能,例如,本文将要介绍的locate命令。 (平常很少会想到使用此命令,find命令使用的更多,偶然想起…...

Cadence Allegro 导出Function Pin Report报告详解

⏪《上一篇》   🏡《上级目录》   ⏩《下一篇》 目录 1,概述2,Function Pin Reportt作用3,Function Pin Report示例4,Function Pin Report导出方法4.1,方法14.2,方法2B站关注“硬小二”浏览更多演示视频 1,概述...

蓝桥杯2018年第九题-缩位求和

题目:在电子计算机普及以前,人们经常用一个粗略的方法来验算四则运算是否正确。比如:248 * 15 3720把乘数和被乘数分别逐位求和,如果是多位数再逐位求和,直到是1位数,得2 4 8 14 > 1 4 5;1 5 65…...

基于Yolv5s的口罩检测

1.Yolov5算法原理和网络结构 YOLOv5按照网络深度和网络宽度的大小,可以分为YO-LOv5s、YOLOv5m、YOLOv5l、YOLOv5x。本文使用YOLOv5s,它的网络结构最为小巧,同时图像推理速度最快达0.007s。YO-LOv5的网络结构主要由四部分组成,分别…...

Linux基本命令

Linux基本命令Linux的目录结构Linux命令入门目录切换相关命令(cd/pwd)相对路径、绝对路径和特殊路径符创建目录命令(mkdir)文件操作命令part1 (touch、cat、more)文件操作命令part2 (cp、mv、rm)查找命令 (which、find…...

云原生场景下的安全左移

本博客地址:https://security.blog.csdn.net/article/details/129430859 一、安全左移概述 安全左移需要考虑开发安全、软件供应链安全、镜像仓库、配置核查这四个部分。 首先是开发安全,安全团队需要关注代码漏洞,比如使用代码检查工具进…...

mysql面试经典问题

文章目录 1. 能说下myisam 和 innodb的区别吗?2. 说下mysql的索引有哪些吧,聚簇和非聚簇索引又是什么?3. 那你知道什么是覆盖索引和回表吗?4. 锁的类型有哪些呢5. 你能说下事务的基本特性和隔离级别吗?6. 那ACID靠什么保证的呢?7. 那你说说什么是幻读,什么是MVCC?幻读什…...

微信小程序|基于小程序+C#制作一个考试答题小程序

基于小程序+C#制作一个考试答题小程序打破传统线下考试答题的边界线问题,使考试不用再局限与某个统一的场所,只要有设备,哪里都能考试。 一、小程序...

【1605. 给定行和列的和求可行矩阵】

来源:力扣(LeetCode) 描述: 给你两个非负整数数组 rowSum 和 colSum ,其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素,但是你知…...

Linux命令之nano命令

一、nano命令简介 nano是一个小型、免费、友好的编辑器,旨在取代非免费Pine包中的默认编辑器Pico。nano不仅复制了Pico的外观,还实现了Pico中一些缺失(或默认禁用)的功能,例如“搜索和替换”和“转到行号和列号”。nan…...

IT项目管理(作业1)

一.单选题(共12题,100.0分) 1.以下哪项是项目的一个实例?( ) A、改进现有的业务流程或程序B、为公司运营提供信息技术支持C、批量生产一种新近开发出来的家用电冰箱D、管理一个公司 我的答案:A 2.下列哪项不能成为项目结束的理由?( ) A…...

蓝桥杯嵌入式(G4系列):串口收发

前言: 在整个蓝桥杯考试中涉及串口的次数还是较多,这里写下这篇博客,记录一下自己的学习过程。 STM32Cubemx配置: 首先,我们点击左侧的Connectivity选择USART1进行如下配置。 使能串口中断 在左侧的管脚配置上也要做出…...

「兔了个兔」玉兔踏青,纯CSS实现瑞兔日历(附源码)

💂作者简介: THUNDER王,一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学会计学专业大二本科在读,同时任汉硕云(广东)科技有限公司ABAP开发顾问。在学习工作中,我通常使用偏后…...

第17章 关于局部波动率的一些总结

这学期会时不时更新一下伊曼纽尔德曼(Emanuel Derman) 教授与迈克尔B.米勒(Michael B. Miller)的《The Volatility Smile》这本书,本意是协助导师课程需要,发在这里有意的朋友们可以学习一下,思…...

反转链表合并两个有序链表链表分割链表的回文结构相交链表

反转链表来源:杭哥206. 反转链表 - 力扣(LeetCode)typedef struct ListNode ListNode; struct ListNode* reverseList(struct ListNode* head) {if (headNULL){return NULL;}ListNode* prevhead;ListNode* curhead->next;ListNode* furNUL…...

联想触摸板只能单击,二指三指失效

问题背景 这问题是我笔记本两三年前重装win10系统后出现的,当时有鼠标懒得弄。今天发现没鼠标后,触摸板连二指滑动都没有太麻烦了,所以决定弄一下。 联想笔记本,win10系统重装后出现的问题。 1.鲁大师,联想电脑管家 …...

mysql 删除表卡死,或是截断(truncate)卡死解决办法

利用工具进行truncate表的时候,一直运行,运行了十几分钟也没有成功。中止之后再运行也是一样。但是删除表的数据以及查询表数据都是可以的。猜测是锁死了。 使用 show processlist; 发现Waiting for table metadata lock 问题; mysql> s…...

ORACLE P6 EPPM 架构及套件介绍(源自Oracle Help)

引言 借助官方帮助的内容, 我水一篇文章,翻译了下文 P6EPPM架构 P6各套件 P6:大多数用户几乎完全依赖在标准网络浏览器中运行的 P6 网络应用程序。简称为 P6,它是管理项目的主要界面。P6 移动版:允许团队成员提供任…...

Android开发面试:数据结构与算法知识答案精解

目录 数据结构与算法 线性表 数组 链表 栈 队列 树 二叉树 红黑树 哈夫曼树 排序算法 冒泡排序 选择排序 插入排序 希尔排序 堆排序 快速排序 归并排序 查找算法 线性查找 二分查找 插值查找 斐波拉契查找 树表查找 分块查找 哈希查找 动态规划算法…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...