当前位置: 首页 > news >正文

ConvNeXt V2实战:使用ConvNeXt V2实现图像分类任务(二)

文章目录

  • 训练部分
    • 导入项目使用的库
    • 设置随机因子
    • 设置全局参数
    • 图像预处理与增强
    • 读取数据
    • 设置Loss
    • 设置模型
    • 设置优化器和学习率调整算法
    • 设置混合精度,DP多卡,EMA
    • 定义训练和验证函数
      • 训练函数
      • 验证函数
      • 调用训练和验证方法
  • 运行以及结果查看
  • 测试
  • 热力图可视化展示
  • 完整的代码

在上一篇文章中完成了前期的准备工作,见链接:
ConvNeXt V2实战:使用ConvNeXt V2实现图像分类任务(一)
这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.convnextv2 import convnextv2_base
from torch.autograd import Variable
from torchvision import datasets
torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0,1"

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):os.environ['PYHTONHASHSEED'] = str(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数

if __name__ == '__main__':#创建保存模型的文件夹file_dir = 'checkpoints/ConvNext/'if os.path.exists(file_dir):print('true')os.makedirs(file_dir,exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数model_lr = 1e-4BATCH_SIZE = 16EPOCHS = 1000DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')use_amp = True  # 是否使用混合精度use_dp = True #是否开启dp方式的多卡训练classes = 12resume =None #"checkpoints/ConvNext/model_5_93.776.pth"CLIP_GRAD = 5.0Best_ACC = 0 #记录最高得分use_ema=Falsemodel_ema_decay=0.9998start_epoch=1seed=1seed_everything(seed)

设置存放权重文件的文件夹,如果文件夹存在删除再建立。

接下来,设置全局参数,比如:学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。
注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

 file_dir = 'checkpoints/ConvNext'

这是存放ConvNext模型的路径。

图像预处理与增强

   # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std= [0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std= [0.18507297, 0.18050247, 0.16784933])])mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

这里注意下Resize的大小,由于选用的PoolFormer模型输入是224×224的大小,所以要Resize为224×224。

读取数据

   # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, pin_memory=True,shuffle=True,drop_last=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, pin_memory=True,shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代。pin_memory设置为True,可以加快运行速度。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPUcriterion_train = SoftTargetCrossEntropy()criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

   #设置模型model_ft = convnextv2_base(pretrained=True)num_fr=model_ft.head.in_featuresmodel_ft.head=nn.Linear(num_fr,classes)if resume:model=torch.load(resume)print(model['state_dict'].keys())model_ft.load_state_dict(model['state_dict'])Best_ACC=model['Best_ACC']start_epoch=model['epoch']+1model_ft.to(DEVICE)
  • 设置模型为convnextv2_base,pretrained设置为true,表示加载预训练模型,修改head层,将将输出classes设置为12。
  • 如果resume为True,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch

设置优化器和学习率调整算法

   # 选择简单暴力的Adam优化器,学习率调低optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:scaler = torch.cuda.amp.GradScaler()if torch.cuda.device_count() > 1 and use_dp:print("Let's use", torch.cuda.device_count(), "GPUs!")model_ft = torch.nn.DataParallel(model_ft)if use_ema:model_ema = ModelEma(model_ft,decay=model_ema_decay,device=DEVICE,resume=resume)else:model_ema=None
  • use_amp为True,则开启混合精度训练,声明pytorch自带的混合精度 torch.cuda.amp.GradScaler()。
  • 检测可用显卡的数量,如果大于1,并且开启多卡训练的情况下,则要用torch.nn.DataParallel加载模型,开启多卡训练。
  • 如果使用ema,则注册ema
    注:torch.nn.DataParallel方式,默认不能开启混合精度训练的,如果想要开启混合精度训练,则需要在模型的forward前面加上@autocast()函数。
    在这里插入图片描述

如果不开启混合精度则要将@autocast()去掉,否则loss一直试nan。

定义训练和验证函数

训练函数

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):model.train()loss_meter = AverageMeter()acc1_meter = AverageMeter()acc5_meter = AverageMeter()total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device, non_blocking=True), Variable(target).to(device,                                                                                 non_blocking=True)samples, targets = mixup_fn(data, target)output = model(samples)optimizer.zero_grad()if use_amp:with torch.cuda.amp.autocast():loss = torch.nan_to_num(criterion_train(output, targets))scaler.scale(loss).backward()torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)# Unscales gradients and calls# or skips optimizer.step()scaler.step(optimizer)# Updates the scale for next iterationscaler.update()else:loss = criterion_train(output, targets)loss.backward()# torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)optimizer.step()if model_ema is not None:model_ema.update(model)torch.cuda.synchronize()lr = optimizer.state_dict()['param_groups'][0]['lr']loss_meter.update(loss.item(), target.size(0))acc1, acc5 = accuracy(output, target, topk=(1, 5))loss_meter.update(loss.item(), target.size(0))acc1_meter.update(acc1.item(), target.size(0))acc5_meter.update(acc5.item(), target.size(0))if (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))ave_loss =loss_meter.avgacc = acc1_meter.avgprint('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):global Best_ACCmodel.eval()loss_meter = AverageMeter()acc1_meter = AverageMeter()acc5_meter = AverageMeter()total_num = len(test_loader.dataset)print(total_num, len(test_loader))val_list = []pred_list = []for data, target in test_loader:for t in target:val_list.append(t.data.item())data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)output = model(data)loss = criterion_val(output, target)_, pred = torch.max(output.data, 1)for p in pred:pred_list.append(p.data.item())acc1, acc5 = accuracy(output, target, topk=(1, 5))loss_meter.update(loss.item(), target.size(0))acc1_meter.update(acc1.item(), target.size(0))acc5_meter.update(acc5.item(), target.size(0))acc = acc1_meter.avgprint('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(loss_meter.avg,  acc,  acc5_meter.avg))if acc > Best_ACC:if isinstance(model, torch.nn.DataParallel):torch.save(model.module, file_dir + '/' + 'best.pth')else:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accif isinstance(model, torch.nn.DataParallel):state = {'epoch': epoch,'state_dict': model.module.state_dict(),'Best_ACC':Best_ACC}if use_ema:state['state_dict_ema']=model.module.state_dict()torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')else:state = {'epoch': epoch,'state_dict': model.state_dict(),'Best_ACC': Best_ACC}if use_ema:state['state_dict_ema']=model.state_dict()torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证is_set_lr = Falselog_dir = {}train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []if resume and os.path.isfile(file_dir+"result.json"):with open(file_dir+'result.json', 'r', encoding='utf-8') as file:logs = json.load(file)train_acc_list = logs['train_acc']train_loss_list = logs['train_loss']val_acc_list = logs['val_acc']val_loss_list = logs['val_loss']epoch_list = logs['epoch_list']for epoch in range(start_epoch, EPOCHS + 1):epoch_list.append(epoch)log_dir['epoch_list'] = epoch_listtrain_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)train_loss_list.append(train_loss)train_acc_list.append(train_acc)log_dir['train_acc'] = train_acc_listlog_dir['train_loss'] = train_loss_listif use_ema:val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)else:val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)val_loss_list.append(val_loss)val_acc_list.append(val_acc)log_dir['val_acc'] = val_acc_listlog_dir['val_loss'] = val_loss_listlog_dir['best_acc'] = Best_ACCwith open(file_dir + '/result.json', 'w', encoding='utf-8') as file:file.write(json.dumps(log_dir))print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))if epoch < 600:cosine_schedule.step()else:if not is_set_lr:for param_group in optimizer.param_groups:param_group["lr"] = 1e-6is_set_lr = Truefig = plt.figure(1)plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')# 显示图例plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')plt.legend(["Train Loss", "Val Loss"], loc="upper right")plt.xlabel(u'epoch')plt.ylabel(u'loss')plt.title('Model Loss ')plt.savefig(file_dir + "/loss.png")plt.close(1)fig2 = plt.figure(2)plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')plt.legend(["Train Acc", "Val Acc"], loc="lower right")plt.title("Model Acc")plt.ylabel("acc")plt.xlabel("epoch")plt.savefig(file_dir + "/acc.png")plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:
在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

ConvNeXt V2测试结果:

请添加图片描述
请添加图片描述

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

PoolFormer_demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import osclasses = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed','Common wheat', 'Fat Hen', 'Loose Silky-bent','Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.51819474, 0.5250407, 0.4945761], std=[0.24228974, 0.24347611, 0.2530049])
])DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/PoolFormer/best.pth',map_location='cpu')
model.eval()
model.to(DEVICE)path = 'test/'
testList = os.listdir(path)
for file in testList:img = Image.open(path + file)img = transform_test(img)img.unsqueeze_(0)img = Variable(img).to(DEVICE)out = model(img)# Predict_, pred = torch.max(out.data, 1)print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 加载model,并将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

热力图可视化展示

新建脚本cam_image.py,插入如下代码:

import argparse
import os
import cv2
import numpy as np
import torch
from pytorch_grad_cam import GradCAM, \ScoreCAM, \GradCAMPlusPlus, \AblationCAM, \XGradCAM, \EigenCAM, \EigenGradCAM, \LayerCAM, \FullGrad
from pytorch_grad_cam import GuidedBackpropReLUModel
from pytorch_grad_cam.utils.image import show_cam_on_image, \deprocess_image, \preprocess_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTargetimport timm
from torch.autograd import Variabledef reshape_transform_resmlp(tensor, height=14, width=14):result = tensor.reshape(tensor.size(0),height, width, tensor.size(2))result = result.transpose(2, 3).transpose(1, 2)return resultdef reshape_transform_swin(tensor, height=7, width=7):result = tensor.reshape(tensor.size(0),height, width, tensor.size(2))# Bring the channels to the first dimension,# like in CNNs.result = result.transpose(2, 3).transpose(1, 2)return resultdef reshape_transform_vit(tensor, height=14, width=14):result = tensor[:, 1:, :].reshape(tensor.size(0),height, width, tensor.size(2))# Bring the channels to the first dimension,# like in CNNs.result = result.transpose(2, 3).transpose(1, 2)return resultdef get_args():parser = argparse.ArgumentParser()parser.add_argument('--use-cuda', action='store_true', default=False,help='Use NVIDIA GPU acceleration')parser.add_argument('--image-path',type=str,default="./test/0bf7bfb05.png",help='Input image path')parser.add_argument('--output-image-path',type=str,default=None,help='Output image path')parser.add_argument('--model',type=str,default='convnext',help='model name')parser.add_argument('--aug_smooth', action='store_true',help='Apply test time augmentation to smooth the CAM')parser.add_argument('--eigen_smooth',action='store_true',help='Reduce noise by taking the first principle componenet''of cam_weights*activations')parser.add_argument('--method', type=str, default='gradcam++',choices=['gradcam', 'gradcam++','scorecam', 'xgradcam','ablationcam', 'eigencam','eigengradcam', 'layercam', 'fullgrad'],help='Can be gradcam/gradcam++/scorecam/xgradcam''/ablationcam/eigencam/eigengradcam/layercam')args = parser.parse_args()args.use_cuda = args.use_cuda and torch.cuda.is_available()if args.use_cuda:print('Using GPU for acceleration')else:print('Using CPU for computation')return argsif __name__ == '__main__':args = get_args()methods = \{"gradcam": GradCAM,"scorecam": ScoreCAM,"gradcam++": GradCAMPlusPlus,"ablationcam": AblationCAM,"xgradcam": XGradCAM,"eigencam": EigenCAM,"eigengradcam": EigenGradCAM,"layercam": LayerCAM,"fullgrad": FullGrad}DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = torch.load('checkpoints/ConvNext/best.pth', map_location='cpu')reshape_transform = Noneif 'poolformer' in args.model:target_layers = [model.network[-1]]  # [model.network[-1][-2]]print(target_layers)elif 'resnet' in args.model:target_layers = [model.layer4[-1]]elif 'convnext' in args.model:target_layers = [model.stages[-1]]elif 'resmlp' in args.model:target_layers = [model.blocks[-1]]reshape_transform = reshape_transform_resmlpelif 'deit' in args.model:target_layers = [model.blocks[-1].norm1]reshape_transform = reshape_transform_vitelif 'swin' in args.model:target_layers = [model.layers[-1].blocks[-1]]reshape_transform = reshape_transform_swinprint(target_layers)model.eval()model.to(DEVICE)img_path = args.image_pathif args.image_path:img_path = args.image_pathelse:import requestsimage_url = 'http://146.48.86.29/edge-mac/imgs/n02123045/ILSVRC2012_val_00023779.JPEG'img_path = image_url.split('/')[-1]if os.path.exists(img_path):img_data = requests.get(image_url).contentwith open(img_path, 'wb') as handler:handler.write(img_data)if args.output_image_path:save_name = args.output_image_pathelse:img_type = img_path.split('.')[-1]it_len = len(img_type)save_name = img_path.split('/')[-1][:-(it_len + 1)]save_name = save_name + '_' + args.model + '.' + img_typeimg = cv2.imread(img_path, 1)img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)if args.model == 'resize':cv2.imwrite(save_name, img)else:rgb_img = img[:, :, ::-1]rgb_img = np.float32(rgb_img) / 255input_tensor = Variable(preprocess_image(rgb_img,mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]), requires_grad=True).to(DEVICE)targets = Nonecam_algorithm = methods[args.method]with cam_algorithm(model=model,target_layers=target_layers,use_cuda=args.use_cuda,reshape_transform=reshape_transform,) as cam:cam.batch_size = 1grayscale_cam = cam(input_tensor=input_tensor,targets=targets,aug_smooth=args.aug_smooth,eigen_smooth=args.eigen_smooth)grayscale_cam = grayscale_cam[0, :]cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)cv2.imwrite(save_name, cam_image)

对get_args函数的参数进行设置:

  • use-cuda:是否使用cuda,如果在没有GPU的电脑上调试时,将其设置为False。
  • image-path:待测图片的路径,这个是必填项。
  • model:必填项,默认值:convnext。

效果如下图所示:

在这里插入图片描述请添加图片描述在这里插入图片描述

完整的代码

完整的代码:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/87523225

相关文章:

ConvNeXt V2实战:使用ConvNeXt V2实现图像分类任务(二)

文章目录训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整算法设置混合精度&#xff0c;DP多卡&#xff0c;EMA定义训练和验证函数训练函数验证函数调用训练和验证方法运行以及结果查看测试热力图可视化展示完…...

【人工智能与深度学习】基于正则化潜在可变能量的模型

【人工智能与深度学习】基于正则化潜在可变能量的模型 正则化潜变量能量基础模型稀疏编码FISTALISTA稀疏编码示例卷积稀疏编码自然图像上的卷积稀疏编码可变自动编码器正则化潜变量能量基础模型 具有潜在变量的模型能够生成预测分布 y ‾ \overline{y}...

【Leetcode——排序的循环链表】

&#x1f60a;&#x1f60a;&#x1f60a; 文章目录一、力扣题之排序循环链表二、解题思路1. 使用双指针法2、找出最大节点&#xff0c;最大节点的下一个节点是最小节点&#xff0c;由此展开讨论总结一、力扣题之排序循环链表 题目如下&#xff1a;航班直达&#xff01;&#…...

ChatGPT研究分享:机器第一次开始理解人类世界目录

0、为什么会对ChatGPT感兴趣一开始&#xff0c;我对ChatGPT是没什么关注的&#xff0c;无非就是有更大的数据集&#xff0c;完成了更大规模的计算&#xff0c;所以能够回答更多的问题。但后来了解到几个案例&#xff0c;开始觉得这个事情并不简单。我先分别列举出来&#xff0c…...

【linux】Linux基本指令(上)

前言&#xff1a; 在之前我们已经简单了介绍了一下【Linux】&#xff0c;包括它的概念&#xff0c;由来啊等进行了讲解&#xff0c;接下来我们就将正式的踏入对其的学习&#xff01;&#xff01;&#xff01; 本文目录&#x1f449;操作系统的概念1.命令的语法1.1命令介绍1.2选…...

程序员必会技能—— 使用日志

目录 1、为什么要使用日志 2、自定义日志打印 2.1、在程序中得到日志对象 2.2、使用日志对象打印日志 2.3、日志格式 3、日志的级别 3.1、日志级别的分类 3.2、日志级别的设置 4、持久化日志 5、更简单的日志输出——lombok 5.1、如何在已经创建好的SpringBoot项目中添加…...

生成项目的包依赖文件requirements.txt

目录生成项目的包依赖文件requirements.txtrequirements.txt文件怎么来&#xff1f;使用pipreqs第三方库requirements.txt文件使用requirements.txt生成项目的包依赖文件requirements.txt 在安装部署代码时或者使用别人的项目时&#xff0c;会需要安装项目的依赖包&#xff0c…...

安卓渐变的背景框实现

安卓渐变的背景框实现1.背景实现方法1.利用PorterDuffXfermode进行图层的混合&#xff0c;这是最推荐的方法&#xff0c;也是最有效的。2.利用canvas裁剪实现&#xff0c;这个方法有个缺陷&#xff0c;就是圆角会出现毛边&#xff0c;也就是锯齿。3.利用layer绘制边框1.背景 万…...

【拳打蓝桥杯】算法前置课——时间复杂度与空间复杂度

文章目录前言为什么需要复杂度分析&#xff1f;大O复杂度表示法时间复杂度分析几种常见时间复杂度实例分析空间复杂度分析内容小结最后说一句&#x1f431;‍&#x1f409;作者简介&#xff1a;大家好&#xff0c;我是黑洞晓威&#xff0c;一名大二学生&#xff0c;希望和大家一…...

vite中动态引入图片,打包之后找不到图片地址?

一般来说项目中我们集中存放图片&#xff0c;然后希望在页面中直接引入&#xff01; 更好的就是直接在模板中调用一个函数 然后传入图片的名字就可以显示出来 事实上确实可以办到&#xff0c;我们用到了一个 new URL import.meta.url这俩个东西 再src目录下 static 下创建一…...

Docker 常用命令大全

目录 一、Docker &#xff08;一&#xff09;Docker基础命令 &#xff08;二&#xff09;docker镜像命令 &#xff08;三&#xff09;docker容器命令 &#xff08;四&#xff09;docker运维命令​​​​​​​ 一、Docker 容器是一种虚拟化技术&#xff0c;容器是镜像实例…...

React项目规范:目录结构、根目录别名、CSS重置、路由、redux、二次封装axios

React项目&#xff08;一&#xff09;一、创建项目二、目录结构三、craco配置别名并安装less1.craco安装2.配置别名3.安装less四、CSS样式重置五、配置路由六、配置Redux1.创建大仓库2.创建小仓库&#xff08;1&#xff09;方式1&#xff1a;RTK&#xff08;2&#xff09;方式2…...

SystemVerilog 教程第一章:简介

SystemVerilog 教程像 Verilog 和 VHDL 之类的硬件描述语言 (HDL) 主要用于描述硬件行为&#xff0c;以便将其转换为由组合门电路和时序元件组成的数字块。为了验证 HDL 中的硬件描述正确无误&#xff0c;就需要具有更多功能特性的面向对象的编程语言 (OOP) 来支持复杂的测试过…...

【Java|基础篇】逻辑控制-顺序结构、分支结构和循环结构

文章目录顺序结构分支结构if单分支语句if else双分支语句if else if else多分支语句switch语句循环语句for循环while循环do while循环continuebreak总结顺序结构 顺序结构是指代码按照从上往下的顺序依次执行 分支结构 选择语句是条件成立时,才会执行的语句.共有三种.分为是if…...

【数据挖掘实战】——家用电器用户行为分析及事件识别(BP神经网络)

项目地址&#xff1a;Datamining_project: 数据挖掘实战项目代码 目录 一、背景和挖掘目标 1、问题背景 2、原始数据 3、挖掘目标 二、分析方法与过程 1、初步分析 2、总体流程 第一步&#xff1a;数据抽取 第二步&#xff1a;探索分析 第三步&#xff1a;数据的预处…...

Kmeans聚类算法-python

import random import pandas as pd import numpy as np import matplotlib.pyplot as plt # 计算欧拉距离 def calcDis(dataSet, centroids, k): clalist[] for data in dataSet: diff np.tile(data, (k, 1)) - centroids #相减 (np.tile(a,(2,1))就是把…...

Linux|奇怪的知识|locate命令---文件管理小工具

前言: Linux的命令是非常多的&#xff0c;有一些冷门的命令&#xff0c;虽然很少用&#xff0c;但可能会有意想不到的功能&#xff0c;例如&#xff0c;本文将要介绍的locate命令。 &#xff08;平常很少会想到使用此命令&#xff0c;find命令使用的更多&#xff0c;偶然想起…...

Cadence Allegro 导出Function Pin Report报告详解

⏪《上一篇》   🏡《上级目录》   ⏩《下一篇》 目录 1,概述2,Function Pin Reportt作用3,Function Pin Report示例4,Function Pin Report导出方法4.1,方法14.2,方法2B站关注“硬小二”浏览更多演示视频 1,概述...

蓝桥杯2018年第九题-缩位求和

题目&#xff1a;在电子计算机普及以前&#xff0c;人们经常用一个粗略的方法来验算四则运算是否正确。比如&#xff1a;248 * 15 3720把乘数和被乘数分别逐位求和&#xff0c;如果是多位数再逐位求和&#xff0c;直到是1位数&#xff0c;得2 4 8 14 > 1 4 5;1 5 65…...

基于Yolv5s的口罩检测

1.Yolov5算法原理和网络结构 YOLOv5按照网络深度和网络宽度的大小&#xff0c;可以分为YO-LOv5s、YOLOv5m、YOLOv5l、YOLOv5x。本文使用YOLOv5s&#xff0c;它的网络结构最为小巧&#xff0c;同时图像推理速度最快达0.007s。YO-LOv5的网络结构主要由四部分组成&#xff0c;分别…...

Linux基本命令

Linux基本命令Linux的目录结构Linux命令入门目录切换相关命令&#xff08;cd/pwd&#xff09;相对路径、绝对路径和特殊路径符创建目录命令&#xff08;mkdir&#xff09;文件操作命令part1 (touch、cat、more)文件操作命令part2 (cp、mv、rm&#xff09;查找命令 (which、find…...

云原生场景下的安全左移

本博客地址&#xff1a;https://security.blog.csdn.net/article/details/129430859 一、安全左移概述 安全左移需要考虑开发安全、软件供应链安全、镜像仓库、配置核查这四个部分。 首先是开发安全&#xff0c;安全团队需要关注代码漏洞&#xff0c;比如使用代码检查工具进…...

mysql面试经典问题

文章目录 1. 能说下myisam 和 innodb的区别吗?2. 说下mysql的索引有哪些吧,聚簇和非聚簇索引又是什么?3. 那你知道什么是覆盖索引和回表吗?4. 锁的类型有哪些呢5. 你能说下事务的基本特性和隔离级别吗?6. 那ACID靠什么保证的呢?7. 那你说说什么是幻读,什么是MVCC?幻读什…...

微信小程序|基于小程序+C#制作一个考试答题小程序

基于小程序+C#制作一个考试答题小程序打破传统线下考试答题的边界线问题,使考试不用再局限与某个统一的场所,只要有设备,哪里都能考试。 一、小程序...

【1605. 给定行和列的和求可行矩阵】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你两个非负整数数组 rowSum 和 colSum &#xff0c;其中 rowSum[i] 是二维矩阵中第 i 行元素的和&#xff0c; colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素&#xff0c;但是你知…...

Linux命令之nano命令

一、nano命令简介 nano是一个小型、免费、友好的编辑器&#xff0c;旨在取代非免费Pine包中的默认编辑器Pico。nano不仅复制了Pico的外观&#xff0c;还实现了Pico中一些缺失&#xff08;或默认禁用&#xff09;的功能&#xff0c;例如“搜索和替换”和“转到行号和列号”。nan…...

IT项目管理(作业1)

一.单选题&#xff08;共12题,100.0分&#xff09; 1.以下哪项是项目的一个实例?( ) A、改进现有的业务流程或程序B、为公司运营提供信息技术支持C、批量生产一种新近开发出来的家用电冰箱D、管理一个公司 我的答案&#xff1a;A 2.下列哪项不能成为项目结束的理由?( ) A…...

蓝桥杯嵌入式(G4系列):串口收发

前言&#xff1a; 在整个蓝桥杯考试中涉及串口的次数还是较多&#xff0c;这里写下这篇博客&#xff0c;记录一下自己的学习过程。 STM32Cubemx配置&#xff1a; 首先&#xff0c;我们点击左侧的Connectivity选择USART1进行如下配置。 使能串口中断 在左侧的管脚配置上也要做出…...

「兔了个兔」玉兔踏青,纯CSS实现瑞兔日历(附源码)

&#x1f482;作者简介&#xff1a; THUNDER王&#xff0c;一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学会计学专业大二本科在读&#xff0c;同时任汉硕云&#xff08;广东&#xff09;科技有限公司ABAP开发顾问。在学习工作中&#xff0c;我通常使用偏后…...

第17章 关于局部波动率的一些总结

这学期会时不时更新一下伊曼纽尔德曼&#xff08;Emanuel Derman&#xff09; 教授与迈克尔B.米勒&#xff08;Michael B. Miller&#xff09;的《The Volatility Smile》这本书&#xff0c;本意是协助导师课程需要&#xff0c;发在这里有意的朋友们可以学习一下&#xff0c;思…...

张家口做网站便宜点的/淘宝补流量平台

http://www.seowhy.com/ 转载于:https://www.cnblogs.com/releaseyou/archive/2009/05/12/1455175.html...

六枝网站建设/天津做网站的公司

一、Spring面试题 1、Spring 在ssm中起什么作用&#xff1f; 答&#xff1a; Spring&#xff1a;Spring轻量级框架。 作用&#xff1a;Bean工厂&#xff0c;用来管理Bean的生命周期和框架集成。 Spring框架的两大核心&#xff1a; ①. IOC/DI(控制反转/依赖注入) &#xf…...

铜煤建设网站/seo优化排名易下拉软件

虽然&#xff0c;SQL Server中的DTS也能将数据倒入Excel&#xff0c;但不如使用程序灵活, 本程序主要代码在按钮函数内。可适应于报表开发的读取数据部分:) 我删除了原程序的很多垃圾代码,只留主要起作用的代码 //加入名称空间 using System.Data; using System.Data.SqlClie…...

怎样免费给自己的公司做网站/苏州网站建设公司

Java进程使用的虚拟内存确实比Java Heap要大很多。JVM包括很多子系统&#xff1a;垃圾收集器、类加载系统、JIT编译器等等&#xff0c;这些子系统各自都需要一定数量的RAM才能正常工作。当一个Java进程运行时&#xff0c;也不仅仅是JVM在消耗RAM&#xff0c;很多本地库&#xf…...

哈尔滨免费建站模板/个人网站注册平台

一.角色以及入口&#xff1a; 角色&#xff1a;系统管理员&#xff0c;开发人员 入口&#xff1a;服务管理--修改服务 二.页面元素检查&#xff1a; 对页面初始化的检查,即页面打开后,对页面不做任何操作时的元素检查。&#xff08;破页&#xff1b;js错&#xff1b;demo对比等…...

制作个人免费网站展示设计/武汉网优化seo公司

首先 下载并安装好网易MuMu模拟器: https://mumu.163.com/mac/index.html 运行网易MuMu,打开后在首页打开设置->开发者选项->打开USB调试模式 如果已经打包好的apk文件&#xff0c;则直接将apk文件拖动到模拟器窗口&#xff0c;apk会被自动安装 ADB connect 这里需要说明…...