当前位置: 首页 > news >正文

Instruct-GS2GS:通过用户指令编辑 GS 三维场景

Paper: Instruct-GS2GS: Editing 3D Gaussian Splats with Instructions
Introduction: https://instruct-gs2gs.github.io/
Code: https://github.com/cvachha/instruct-gs2gs

Instruct-GS2GS 复用了 Instruct-NeRF2NeRF 1 的架构,将基于 NeRF 的三维场景编辑方法迁移到基于 3D GS 的三维场景中。

与 Instruct-NeRF2NeRF 不同的是,Instruct-GS2GS 并不采取 Instruct-NeRF2NeRF 中 Iterative DU 的迭代方式,而是在每一轮的迭代中更新所有训练视图,然后训练 GS 场景。

在这里插入图片描述

目录

  • 一. 研究思路
  • 二. Instruct-GS2GS 模型
  • 三. 训练方法
  • 四. 实验结果
  • 五. 总结
  • 六. 复现

一. 研究思路

二. Instruct-GS2GS 模型

三. 训练方法

在每一轮训练中,先使用 InstructPix2Pix 编辑 所有 训练视图并更新,然后使用全新的训练集训练当前 GS 场景 2.5k 轮。不断重复上述迭代直至收敛。

Instruct-GS2GS 并不采取 Instruct-NeRF2NeRF 中 Iterative DU 的迭代方式,而是在每一轮的迭代中更新所有训练视图,然后再训练 GS 场景。这是因为 NeRF 是基于像素优化的,而 GS 是基于图像优化的,需要一次性光栅化整个图像并计算其损失。如果 Instruct-GS2GS 只更新部分数据集,那么光栅化时必然有一些视角下的图像对应的场景是混合包含已编辑和未编辑图像信息,那么此时计算基于整张图像的损失函数就会失真,导致错误的更新。2

在这里插入图片描述

四. 实验结果

在这里插入图片描述

五. 总结

六. 复现

Instruct-GS2GS 基于 Nerfstudio:

  • 平台:AutoDL
  • 显卡:RTX 4090 24GB
  • 镜像:PyTorch 2.0.0、Python 3.8(ubuntu20.04)、Cuda 11.8
  • 源码:https://github.com/cvachha/instruct-gs2gs

实验记录

  1. 先按照 nerfstudio 教程 创建虚拟环境并激活:source activate nerfstudio。然后安装依赖包,执行到 conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit 即可;

  2. 安装 Instruct-GS2GS 包,然后克隆 Instruct-GS2GS 仓库并更新组件和包;

  3. 在 instruct-gs2gs 文件夹下克隆并安装 Nerfstudio 3,随后执行 ns-train -h 就可以成功验证;
    在这里插入图片描述

  4. Nerfstudio 安装完成后,就可以训练了。因为系统盘空间有限,因此将训练数据放在数据盘,使用 garden 数据集进行训练:ns-train splatfacto --data ../autodl-tmp/data/garden。需要注意的是,这里使用的是 1.0 版本的 Nerfstudio,不再有 gaussian-splatting 参数,这里选用 splatfacto
    在这里插入图片描述
    上一版本的 Instruct-GS2GS 因为 dataparser 的问题,训练时解析 colmap 数据时还会出现路径错误,新版本使用 Nerfstudio V1.0 修复了该问题:
    在这里插入图片描述

  5. 训练时遇到 FileNotFoundError 报错,找不到 colmap 数据中的 .json 文件:
    在这里插入图片描述
    一开始以为是 colmap 处理数据时的命名歧义,将 instruct-gs2gs/nerfstudio/nerfstudio/data/dataparsers/nerfstudio_dataparser.py 第 94 行的 "transforms.json" 修改为 "cameras.json",事实上并非如此。后来发现是训练数据中缺少 transforms.json 文件 4,尝试先安装 COLMAP 5,然后自行处理数据 6ns-process-data images --data ../autodl-tmp/data/garden --output-dir ../autodl-tmp/data/garden。随后就可以成功训练;

  6. garden 场景训练完成后,就可以进行编辑:ns-train igs2gs --data ../autodl-tmp/data/garden --load-dir outputs/garden/splatfacto/2024-05-11_142858/nerfstudio_models --pipeline.prompt "Delete the vase on the table" --pipeline.guidance-scale 12.5 --pipeline.image-guidance-scale 1.5
    在这里插入图片描述

  7. 如果是在服务器上训练的,想要使用监视窗口,需要转发:ssh -p <port> -L 7007:localhost:7007 <username>@<training-host-ip>
    在这里插入图片描述

  8. 训练和编辑后的场景可以再次查看:ns-viewer --load-config outputs/garden/splatfacto/2024-05-11_142858/config.yml,也可以渲染成视频:ns-render camera-path --load-config outputs/garden/splatfacto/2024-05-11_142858/config.yml --camera-path-filename ../autodl-tmp/data/garden/camera_paths/2024-05-11_142858.json --output-path renders/garden/2024-05-11_142858.mp4。渲染场景时,出现 RuntimeError: stack expects a non-empty TensorList 报错:
    在这里插入图片描述
    查询发现是 camera_pathskeyframes 为空导致的 7,机位为空应该是处理数据过程中的问题,目前还没找到解决办法。可以在 Nerfstudio 的可视化界面自行处理数据或者直接使用其他数据集处理得到的机位文件,但后者可能会失真。本次实验使用 Bear 场景的机位进行渲染:
    在这里插入图片描述

实验结果

借用 Bear 场景的机位路径渲染编辑前后的 garden 场景视频如下:

garden场景训练效果

garden场景编辑效果


  1. Instruct-NeRF2NeRF:通过用户指令编辑 NeRF 三维场景 ↩︎

  2. A question about Dataset Update #4 ↩︎

  3. Fresh install error #72 ↩︎

  4. Colab Notebook not generating transforms.json file for custom data #2272 ↩︎

  5. Nerfstudio | Installing COLMAP ↩︎

  6. Nerfstudio | Processing Data ↩︎

  7. Unable to render to mp4 with RuntimeError: stack expects a non-empty TensorList #2916 ↩︎

相关文章:

Instruct-GS2GS:通过用户指令编辑 GS 三维场景

Paper: Instruct-GS2GS: Editing 3D Gaussian Splats with Instructions Introduction: https://instruct-gs2gs.github.io/ Code: https://github.com/cvachha/instruct-gs2gs Instruct-GS2GS 复用了 Instruct-NeRF2NeRF 1 的架构&#xff0c;将基于 NeRF 的三维场景编辑方法迁…...

disql使用

SQL 交互式查询工具 | 达梦技术文档 进入bin目录&#xff1a;cd /opt/dmdbms/bin 启动disql&#xff1a;./disql&#xff0c;然后输入用户名、密码 sh文件直接使用disql&#xff1a; 临时添加路径到PATH环境变量&#xff1a;在当前会话中临时使用disql命令而无需每次都写完整…...

SpringBoot Mybatis-Plus 日志带参数

SpringBoot Mybatis-Plus 日志带参数 1 实现代码2 测试结果 在Spring Boot中&#xff0c;MyBatis插件机制通过拦截器&#xff08;Interceptor&#xff09;来实现。拦截器允许开发人员在执行SQL语句的各个阶段&#xff08;如SQL语句创建、参数处理、结果映射等&#xff09;插入自…...

【WebGIS平台】传统聚落建筑科普数字化建模平台

基于上述概括出建筑单体的特征部件&#xff0c;本文利用互联网、三维建模和地理信息等技术设计了基于浏览器/服务器&#xff08;B/S&#xff09;的传统聚落建筑科普数字化平台。该平台不仅实现了对传统聚落建筑风貌从基础到复杂的数字化再现&#xff0c;允许用户轻松在线构建从…...

Zookeeper分布式锁原理说明【简单易理解】

Zookeeper 非公平锁/公平锁/共享锁 。 1.zookeeper分布式锁加锁原理 如上实现方式在并发问题比较严重的情况下&#xff0c;性能会下降的比较厉害&#xff0c;主要原因是&#xff0c;所有的连接都在对同一个节点进行监听&#xff0c;当服务器检测到删除事件时&#xff0c;要通知…...

去除Win32 Tab Control控件每个选项卡上的深色对话框背景

一般情况下&#xff0c;我们是用不带边框的对话框来充当Tab Control的每个选项卡的内容的。 例如&#xff0c;主对话框IDD_TABBOX上有一个Tab Control&#xff0c;上面有两个选项卡&#xff0c;第一个选项卡用的是IDD_DIALOG1充当内容&#xff0c;第二个用的则是IDD_DIALOG2。I…...

iis部署前后端分离项目(React前端,Node.js后端)

iis虽然已经有点过时&#xff0c;但不少用户还在用&#xff0c;故总结一下。 1. 安装iis 如果电脑没有自带iis管理器&#xff0c;打开控制面板->程序->启用或关闭Windows功能&#xff0c;勾选iis安装即可 2. 部署前端项目 打开iis&#xff0c;添加网站&#xff0c;物理…...

【前端项目笔记】9 数据报表

数据报表 效果展示&#xff1a; 在开发代码之前新建分支 git checkout -b report 新建分支report git branch 查看分支 git push -u origin report 将本地report分支推送到云端origin并命名为report 通过路由的形式将数据报表加载到页面中 渲染数据报表基本布局 面包屑导航…...

等保测评推动哈尔滨数字化转型中的安全保障

在数字经济的浪潮下&#xff0c;哈尔滨作为东北老工业基地的核心城市&#xff0c;正积极推动数字化转型&#xff0c;以创新技术驱动产业升级和经济发展。网络安全等级保护测评&#xff08;简称“等保测评”&#xff09;作为国家网络安全战略的重要组成部分&#xff0c;为哈尔滨…...

#pragma 指令

#pragma 指令作用是设定编译器的状态或者是指示编译器完成一些特定的动作 message 参数能够在编译信息输出窗口中输出相应的信息 #pragma message(“消息文本”) code_seg参数能够设置程序中函数代码存放的代码段&#xff0c;当我们开发驱动程序的时候就会使用到它 #pragma…...

【Excel】 批量跳转图片

目录标题 1. CtrlA全选图片 → 右键 → 大小和属性2. 取消 锁定纵横比 → 跳转高度宽度 → 关闭窗口3. 最后一图拉到最后一单元格 → Alt吸附边框![](https://i-blog.csdnimg.cn/direct/d56ac1f41af54d54bb8c68339b558dd1.png)4. CtrlA全选图片 → 对齐 → 左对齐 → 纵向分布!…...

网站更新改版了

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a;Leo杂谈 ✨特色专栏&#xff1a;MySQL学…...

初识大模型

前提&#xff1a;学习一项技术&#xff0c;要从原理、实践、认知三个方面进行攻克。 不懂原理就不会举一反三&#xff0c;走不了太远。 不懂实践就只能纸上谈兵&#xff0c;做事不落地。 认知不高就无法作对决策&#xff0c;天花板太低。 一、知识体系 二、什么是AI 基于机器…...

Open3D SVD算法实现对应点集配准

目录 一、概述 1.1基本思想 1.2实现步骤 二、代码实现 三、实现效果 3.1原始点云 3.2配准后点云 3.3变换矩阵 一、概述 在点云配准中,SVD(Singular Value Decomposition,奇异值分解)方法是一种常用的精确计算旋转和平移变换的算法。其目标是找到一个刚体变…...

bWAPP靶场安装

bWAPP安装 下载 git地址&#xff1a;https://github.com/raesene/bWAPP 百度网盘地址&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1Y-LvHxyW7SozGFtHoc9PKA 提取码&#xff1a;4tt8 –来自百度网盘超级会员V5的分享 phpstudy中打开根目录&#xff0c;并将下载的文…...

SpringBoot + MyBatisPlus 实现多租户分库

一、引言 在如今的软件开发中&#xff0c;多租户(Multi-Tenancy)应用已经变得越来越常见。多租户是一种软件架构技术&#xff0c;它允许一个应用程序实例为多个租户提供服务。每个租户都有自己的数据和配置&#xff0c;但应用程序实例是共享的。而在我们的Spring Boot MyBati…...

【数据挖掘】银行信用卡风险大数据分析与挖掘

银行信用卡风险大数据分析与挖掘 1、实验目的 中国某个商业银行高层发现自家信用卡存在严重的欺诈和拖欠现象,已经影响到自身经营和发展。银行高层希望大数据分析部门采用数据挖掘技术,对影响用户信用等级的主要因素进行分析,结合信用卡用户的人口特征属性对欺诈行为和拖欠…...

使用 Qt 和 ECharts 进行数据可视化

文章目录 示例图表预览折线图散点图柱状图使用 Qt 和 ECharts 进行数据可视化一、准备工作1. 安装 Qt2. 准备 ECharts二、在 Qt 中使用 ECharts1. 创建 Qt 项目2. 配置项目文件3. 在 UI 中添加 WebEngineView4. 加载 ECharts三、创建折线图、散点图和柱状图1. 折线图2. 散点图3…...

【机器学习】在【Pycharm】中的实践教程:使用【逻辑回归模型】进行【乳腺癌检测】

目录 案例背景 具体问题 1. 环境准备 小李的理解 知识点 2. 数据准备 2.1 导入必要的库和数据集 小李的理解 知识点 2.2 数据集基本信息 小李的理解 知识点 注意事项 3. 数据预处理 3.1 划分训练集和测试集 小李的理解 知识点 注意事项 3.2 数据标准化 小李…...

【搭建Nacos服务】centos7 docker从0搭建Nacos服务

前言 本次搭建基于阿里云服务器系统为&#xff08;CentOS7 Linux&#xff09;、Nacos&#xff08;2.0.3&#xff09;、Docker version 26.1.4 本次搭建基于一个新的云服务器 安装java yum install -y java-1.8.0-openjdk.x86_64安装驱动以及gcc等前置需要的命令 yum install …...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...