当前位置: 首页 > news >正文

LLM应用构建前的非结构化数据处理(三)文档表格的提取

1.学习内容

本节次学习内容来自于吴恩达老师的Preprocessing Unstructured Data for LLM Applications课程,因涉及到非结构化数据的相关处理,遂做学习整理。
本节主要学习pdf中的表格数据处理

2.环境准备

和之前一样,可以参考LLM应用构建前的非结构化数据处理(一)标准化处理认识数据
,其中配置信息保持一致

同样的,需要unstructured.io上获取APIkey。

3.开始尝试

3.1导入环境

# Warning control
import warnings
warnings.filterwarnings('ignore')from unstructured_client import UnstructuredClient
from unstructured_client.models import shared
from unstructured_client.models.errors import SDKErrorfrom unstructured.staging.base import dict_to_elements
# 初始化API
s = UnstructuredClient(api_key_auth="XXX",server_url="https://api.unstrXXX",
)

3.2样例浏览

from IPython.display import Image
Image(filename="images/embedded-images-tables.jpg", height=600, width=600) 

输出如下:
在这里插入图片描述

3.3处理pdf文档

filename = "example_files/embedded-images-tables.pdf"with open(filename, "rb") as f:files=shared.Files(content=f.read(),file_name=filename,)req = shared.PartitionParameters(files=files,strategy="hi_res",hi_res_model_name="yolox",skip_infer_table_types=[],pdf_infer_table_structure=True,
)try:resp = s.general.partition(req)elements = dict_to_elements(resp.elements)
except SDKError as e:print(e)
# 找到处理数据中的Table元素的unstructured对象数据
tables = [el for el in elements if el.category == "Table"]
tables[0].text

输出如下:

'Inhibitor Polarization Corrosion be (V/dec) ba (V/dec) Ecorr (V) icorr (AJcm?) concentration (g) resistance (Q) rate (mmj/year) 0.0335 0.0409 —0.9393 0.0003 24.0910 2.8163 1.9460 0.0596 .8276 0.0002 121.440 1.5054 0.0163 0.2369 .8825 0.0001 42121 0.9476 s NO 03233 0.0540 —0.8027 5.39E-05 373.180 0.4318 0.1240 0.0556 .5896 5.46E-05 305.650 0.3772 = 5 0.0382 0.0086 .5356 1.24E-05 246.080 0.0919'

将其转为html形式

table_html = tables[0].metadata.text_as_html
table_html

输出如下:

'<table><thead><tr><th>Inhibitor concentration (g)</th><th>be (V/dec)</th><th>ba (V/dec)</th><th>Ecorr (V)</th><th>icorr (AJcm?)</th><th>Polarization resistance (Q)</th><th>Corrosion rate (mmj/year)</th></tr></thead><tbody><tr><td></td><td>0.0335</td><td>0.0409</td><td>—0.9393</td><td>0.0003</td><td>24.0910</td><td>2.8163</td></tr><tr><td>NO</td><td>1.9460</td><td>0.0596</td><td>—0.8276</td><td>0.0002</td><td>121.440</td><td>1.5054</td></tr><tr><td></td><td>0.0163</td><td>0.2369</td><td>—0.8825</td><td>0.0001</td><td>42121</td><td>0.9476</td></tr><tr><td>s</td><td>03233</td><td>0.0540</td><td>—0.8027</td><td>5.39E-05</td><td>373.180</td><td>0.4318</td></tr><tr><td></td><td>0.1240</td><td>0.0556</td><td>—0.5896</td><td>5.46E-05</td><td>305.650</td><td>0.3772</td></tr><tr><td>= 5</td><td>0.0382</td><td>0.0086</td><td>—0.5356</td><td>1.24E-05</td><td>246.080</td><td>0.0919</td></tr></tbody></table>'

3.4 格式化呈现

from io import StringIO 
from lxml import etreeparser = etree.XMLParser(remove_blank_text=True)
file_obj = StringIO(table_html)
tree = etree.parse(file_obj, parser)
print(etree.tostring(tree, pretty_print=True).decode())

输出如下:

<table><thead><tr><th>Inhibitor concentration (g)</th><th>be (V/dec)</th><th>ba (V/dec)</th><th>Ecorr (V)</th><th>icorr (AJcm?)</th><th>Polarization resistance (Q)</th><th>Corrosion rate (mmj/year)</th></tr></thead><tbody><tr><td/><td>0.0335</td><td>0.0409</td><td>&#8212;0.9393</td><td>0.0003</td><td>24.0910</td><td>2.8163</td></tr><tr><td>NO</td><td>1.9460</td><td>0.0596</td><td>&#8212;0.8276</td><td>0.0002</td><td>121.440</td><td>1.5054</td></tr><tr><td/><td>0.0163</td><td>0.2369</td><td>&#8212;0.8825</td><td>0.0001</td><td>42121</td><td>0.9476</td></tr><tr><td>s</td><td>03233</td><td>0.0540</td><td>&#8212;0.8027</td><td>5.39E-05</td><td>373.180</td><td>0.4318</td></tr><tr><td/><td>0.1240</td><td>0.0556</td><td>&#8212;0.5896</td><td>5.46E-05</td><td>305.650</td><td>0.3772</td></tr><tr><td>= 5</td><td>0.0382</td><td>0.0086</td><td>&#8212;0.5356</td><td>1.24E-05</td><td>246.080</td><td>0.0919</td></tr></tbody>
</table>

3.5 还原表格到html中显示

from IPython.core.display import HTML
HTML(table_html)

输出如下:在这里插入图片描述

3.6 借助langchain进行摘要

from langchain_openai import ChatOpenAI
from langchain_core.documents import Document
from langchain.chains.summarize import load_summarize_chainllm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-1106")
chain = load_summarize_chain(llm, chain_type="stuff")
chain.invoke([Document(page_content=table_html)])

输出如下:

{'input_documents': [Document(page_content='<table><thead><tr><th>Inhibitor concentration (g)</th><th>be (V/dec)</th><th>ba (V/dec)</th><th>Ecorr (V)</th><th>icorr (AJcm?)</th><th>Polarization resistance (Q)</th><th>Corrosion rate (mmj/year)</th></tr></thead><tbody><tr><td></td><td>0.0335</td><td>0.0409</td><td>—0.9393</td><td>0.0003</td><td>24.0910</td><td>2.8163</td></tr><tr><td>NO</td><td>1.9460</td><td>0.0596</td><td>—0.8276</td><td>0.0002</td><td>121.440</td><td>1.5054</td></tr><tr><td></td><td>0.0163</td><td>0.2369</td><td>—0.8825</td><td>0.0001</td><td>42121</td><td>0.9476</td></tr><tr><td>s</td><td>03233</td><td>0.0540</td><td>—0.8027</td><td>5.39E-05</td><td>373.180</td><td>0.4318</td></tr><tr><td></td><td>0.1240</td><td>0.0556</td><td>—0.5896</td><td>5.46E-05</td><td>305.650</td><td>0.3772</td></tr><tr><td>= 5</td><td>0.0382</td><td>0.0086</td><td>—0.5356</td><td>1.24E-05</td><td>246.080</td><td>0.0919</td></tr></tbody></table>')],'output_text': 'The table provides data on the corrosion rate and polarization resistance of different inhibitor concentrations in a solution. The data includes the inhibitor concentration, be and ba values, Ecorr, icorr, polarization resistance, and corrosion rate. The table shows the impact of different inhibitor concentrations on the corrosion rate and polarization resistance.'}

4. 总结

可以看到,非结构化数据识别还是有难度,不知道为什么,实验中部分识别结果是错的,如果追求准确性,还是得斟酌一下。

相关文章:

LLM应用构建前的非结构化数据处理(三)文档表格的提取

1.学习内容 本节次学习内容来自于吴恩达老师的Preprocessing Unstructured Data for LLM Applications课程&#xff0c;因涉及到非结构化数据的相关处理&#xff0c;遂做学习整理。 本节主要学习pdf中的表格数据处理 2.环境准备 和之前一样&#xff0c;可以参考LLM应用构建前…...

如何从数码相机恢复已删除的照片

照片恢复是恢复已删除照片的最佳工具&#xff0c;它带有恢复 RAW 照片的选项。在本文中&#xff0c;我们将解释如何恢复已删除的照片。 不仅对于专业摄影师&#xff0c;对于像我们这样喜欢捕捉回忆的人来说&#xff0c;瞬间相机都是重要的数码设备。遗憾的是&#xff0c;就像智…...

设计模式使用场景实现示例及优缺点(创建型模式——单例模式、建造者模式、原型模式)

创建型模式 单例模式&#xff08;Singleton Pattern&#xff09; 单例模式&#xff08;Singleton Pattern&#xff09;在Java中的使用场景与在其他编程语言中类似&#xff0c;其主要目的是确保一个类只有一个实例&#xff0c;并提供一个全局的访问点。以下是单例模式的一些常…...

LAMP万字详解(概念、构建步骤)

目录 LAMP Apache 起源 主要特点 软件版本 编译安装httpd服务器 编译安装的优点 操作步骤 准备工作 编译 安装 优化执行路径 添加服务 守护进程 配置httpd 查看 Web 站点的访问情况 虚拟主机 类型 部署基于域名的虚拟主机 为虚拟主机提供域名解析&#xff…...

金南瓜科技SECS/GEM:引领智能制造新潮流

引言 在当今快速发展的半导体行业中&#xff0c;智能制造和自动化生产已成为提升效率和降低成本的关键。金南瓜科技凭借其先进的SECS/GEM解决方案&#xff0c;正成为这一变革的先锋。 SECS/GEM&#xff1a;智能制造的核心 SECS/GEM&#xff08;SEMI Equipment Communications …...

昇思训练营打卡第二十一天(DCGAN生成漫画头像)

DCGAN&#xff0c;即深度卷积生成对抗网络&#xff08;Deep Convolutional Generative Adversarial Network&#xff09;&#xff0c;是一种深度学习模型&#xff0c;由Ian Goodfellow等人在2014年提出。DCGAN在生成对抗网络&#xff08;GAN&#xff09;的基础上&#xff0c;引…...

东方通Tongweb发布vue前端

一、前端包中添加文件 1、解压vue打包文件 以dist.zip为例&#xff0c;解压之后得到dist文件夹&#xff0c;进入dist文件夹&#xff0c;新建WEB-INF文件夹&#xff0c;进入WEB-INF文件夹&#xff0c;新建web.xml文件&#xff0c; 打开web.xml文件&#xff0c;输入以下内容 …...

spring xml实现bean对象(仅供自己参考)

对于spring xml来实现bean 具体代码&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaL…...

MiniGPT-Med 通用医学视觉大模型:生成医学报告 + 视觉问答 + 医学疾病识别

MiniGPT-Med 通用医学视觉大模型&#xff1a;生成医学报告 视觉问答 医学疾病识别 提出背景解法拆解 论文&#xff1a;https://arxiv.org/pdf/2407.04106 代码&#xff1a;https://github.com/Vision-CAIR/MiniGPT-Med 提出背景 近年来&#xff0c;人工智能&#xff08;AI…...

如何判断ip地址在同一个网段:技术解析与实际应用

在网络世界中&#xff0c;IP地址就像每个人的身份证一样&#xff0c;是识别和定位网络设备的关键。然而&#xff0c;仅仅知道IP地址还不足以完全理解其背后的网络结构和通信方式。特别是当我们需要判断两个或多个IP地址是否位于同一网段时&#xff0c;就需要借助子网掩码这一概…...

linux高级编程(TCP)(传输控制协议)

TCP与UDP: TCP: TCP优点&#xff1a; 可靠&#xff0c;稳定 TCP的可靠体现在TCP在传递数据之前&#xff0c;会有三次握手来建立连接&#xff0c;而且在数据传递时&#xff0c;有确认、窗口、重传、拥塞控制机制&#xff0c;在数据传完后&#xff0c;还会断开连接用来节约系统…...

【常见开源库的二次开发】一文学懂CJSON

简介&#xff1a; JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式。它基于JavaScript的一个子集&#xff0c;但是JSON是独立于语言的&#xff0c;这意味着尽管JSON是由JavaScript语法衍生出来的&#xff0c;它可以被任何编程语言读取和生成…...

点云下采样有损压缩

转自本人博客&#xff1a;点云下采样有损压缩 点云下采样是通过一定规则对原点云数据进行再采样&#xff0c;减少点云个数&#xff0c;降低点云稀疏程度&#xff0c;减小点云数据大小。 1. 体素下采样&#xff08;Voxel Down Sample&#xff09; std::shared_ptr<PointClo…...

AutoHotKey自动热键(六)转义符号

转义符号 符号说明,, (原义的逗号). 注意: 在命令最后一个参数中的逗号不需要转义, 因为程序知道把它们作为原义处理. 对于 MsgBox 所有参数同样如此, 因为它会智能的处理逗号.%% (原义的百分号) (原义的重音符; 即两个连续的转义符产生单个原义字符);; (原义的分号). 注意: 仅…...

第16章 主成分分析:四个案例及课后习题

1.假设 x x x为 m m m 维随机变量&#xff0c;其均值为 μ \mu μ&#xff0c;协方差矩阵为 Σ \Sigma Σ。 考虑由 m m m维随机变量 x x x到 m m m维随机变量 y y y的线性变换 y i α i T x ∑ k 1 m α k i x k , i 1 , 2 , ⋯ , m y _ { i } \alpha _ { i } ^ { T } …...

股票分析系统设计方案大纲与细节

股票分析系统设计方案大纲与细节 一、引言 随着互联网和金融行业的迅猛发展,股票市场已成为重要的投资渠道。投资者在追求财富增值的过程中,对股票市场的分析和预测需求日益增加。因此,设计并实现一套高效、精准的股票分析系统显得尤为重要。本设计方案旨在提出一个基于大…...

.gitmodules文件

.gitmodules文件在Git仓库中的作用 .gitmodules 文件是 Git 版本控制系统中用来跟踪和管理子模块的配置文件。子模块允许你将一个 Git 仓库嵌套在另一个仓库中&#xff0c;这样可以方便地管理多个项目之间的依赖关系。 在 .gitmodules 文件中&#xff0c;通常会记录每个子模块…...

STM32 SPI世界:W25Q64 Flash存储器的硬件与软件集成策略

摘要 在嵌入式系统设计中&#xff0c;选择合适的存储解决方案对于确保数据的安全性和系统的可靠性至关重要。W25Q64 Flash存储器因其高性能和大容量成为STM32微控制器项目中的热门选择。本文将深入探讨STM32与W25Q64 Flash存储器的硬件连接、软件集成以及SPI通信的最佳实践。 …...

【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验17 开放最短路径优先OSPF

一、实验目的 1.验证OSPF协议的作用&#xff1b; 二、实验要求 1.使用Cisco Packet Tracer仿真平台&#xff1b; 2.观看B站湖科大教书匠仿真实验视频&#xff0c;完成对应实验。 三、实验内容 1.构建网络拓扑&#xff1b; 2.验证OSPF协议的作用。 四、实验步骤 1.构建网…...

ChatGPT对话:python程序模拟操作网页弹出对话框

【编者按】单击一网页中的按钮&#xff0c;弹出对话框网页&#xff0c;再单击其中的“Yes”按钮&#xff0c;对话框关闭&#xff0c;请求并获取新网页。 可能ChatGPT第一次没有正确理解描述问题的含义&#xff0c;再次说明后&#xff0c;程序编写就正确了。 1问&#xff1a;pyt…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...