当前位置: 首页 > news >正文

求函数最小值-torch版

目标:torch实现下面链接中的梯度下降法

先计算 y=x^2 的导函数 y{}'=2x ,然后计算导函数 在x_{0}=7.5处的梯度 (导数)

让 x_{0}沿着 梯度的负方向移动

x\leftarrow x-y{}'x_{0}

自变量x 的更新过程如下

x_{1}\leftarrow x_{0}-y{}'_{x0}

x_{2}\leftarrow x_{1}-y{}'_{x1}

x_{3}\leftarrow x_{2}-y{}'_{x2}

\cdot \cdot \cdot

x_{n}\leftarrow x_{n-1}-y{}'_{x_{n-1}}

torch代码实现如下

import torchx = torch.tensor([7.5],requires_grad=True)
# print(x.grad)optimizer = torch.optim.SGD([x], lr=1)print('x_0 = {}'.format(x))for i in range(10):y = x * xoptimizer.zero_grad()y.backward()optimizer.step()print('x_{} = {}'.format(i+1,x))

运行效果如下:

x_0 = tensor([7.5000], requires_grad=True)
x_1 = tensor([-7.5000], requires_grad=True)
x_2 = tensor([7.5000], requires_grad=True)
x_3 = tensor([-7.5000], requires_grad=True)
x_4 = tensor([7.5000], requires_grad=True)
x_5 = tensor([-7.5000], requires_grad=True)
x_6 = tensor([7.5000], requires_grad=True)
x_7 = tensor([-7.5000], requires_grad=True)
x_8 = tensor([7.5000], requires_grad=True)
x_9 = tensor([-7.5000], requires_grad=True)
x_10 = tensor([7.5000], requires_grad=True)

给梯度加系数

我们可以给 梯度 加个系数,如下

x_{1}\leftarrow x_{0}-0.01*y{}'_{x0}

x_{2}\leftarrow x_{1}-0.01*y{}'_{x1}

x_{3}\leftarrow x_{2}-0.01*y{}'_{x2}

\cdot \cdot \cdot

x_{n}\leftarrow x_{n-1}-0.01*y{}'_{x_{n-1}}

torch代码实现如下

import torchx = torch.tensor([7.5],requires_grad=True)
# print(x.grad)optimizer = torch.optim.SGD([x], lr=0.01)print('x_0 = {}'.format(x))for i in range(10):y = x * xoptimizer.zero_grad()y.backward()optimizer.step()print('x_{} = {}'.format(i+1,x))

运行效果如下:

x_0 = tensor([7.5000], requires_grad=True)
x_1 = tensor([7.3500], requires_grad=True)
x_2 = tensor([7.2030], requires_grad=True)
x_3 = tensor([7.0589], requires_grad=True)
x_4 = tensor([6.9178], requires_grad=True)
x_5 = tensor([6.7794], requires_grad=True)
x_6 = tensor([6.6438], requires_grad=True)
x_7 = tensor([6.5109], requires_grad=True)
x_8 = tensor([6.3807], requires_grad=True)
x_9 = tensor([6.2531], requires_grad=True)
x_10 = tensor([6.1280], requires_grad=True)

调迭代次数

发现 x变化的很慢,我们可以增加迭代次数,如下

import torchx = torch.tensor([7.5],requires_grad=True)
# print(x.grad)optimizer = torch.optim.SGD([x], lr=0.01)print('x_0 = {}'.format(x))for i in range(200):y = x * xoptimizer.zero_grad()y.backward()optimizer.step()print('x_{} = {}'.format(i+1,x))

运行结果如下:

x_0 = tensor([7.5000], requires_grad=True)
x_1 = tensor([7.3500], requires_grad=True)
x_2 = tensor([7.2030], requires_grad=True)
...
x_199 = tensor([0.1346], requires_grad=True)
x_200 = tensor([0.1319], requires_grad=True)

调梯度系数

我们把 0.01 换成 0.1 试试

import torchx = torch.tensor([7.5],requires_grad=True)
# print(x.grad)optimizer = torch.optim.SGD([x], lr=0.1)print('x_0 = {}'.format(x))for i in range(10):y = x * xoptimizer.zero_grad()y.backward()optimizer.step()print('x_{} = {}'.format(i+1,x))

运行结果如下:

x_0 = tensor([7.5000], requires_grad=True)
x_1 = tensor([6.], requires_grad=True)
x_2 = tensor([4.8000], requires_grad=True)
x_3 = tensor([3.8400], requires_grad=True)
x_4 = tensor([3.0720], requires_grad=True)
x_5 = tensor([2.4576], requires_grad=True)
x_6 = tensor([1.9661], requires_grad=True)
x_7 = tensor([1.5729], requires_grad=True)
x_8 = tensor([1.2583], requires_grad=True)
x_9 = tensor([1.0066], requires_grad=True)
x_10 = tensor([0.8053], requires_grad=True)

相关文章:

求函数最小值-torch版

目标:torch实现下面链接中的梯度下降法 先计算 的导函数 ,然后计算导函数 在处的梯度 (导数) 让 沿着 梯度的负方向移动, 自变量 的更新过程如下 torch代码实现如下 import torchx torch.tensor([7.5],requires_gradTrue) # print(x.gr…...

如何将HEVC格式的视频转换为无损、未压缩的MP4格式视频?

在和大家分享视频格式转换之前,先跟大家分享一下HEVC格式的视频到底是什么文件?压缩原理是什么?了解了它的本质之后,我们就可以知道如何保证视频高清无损了。 如何将HEVC格式的视频转换为无损、未压缩的MP4格式视频? …...

自定义在线活动报名表单小程序源码系统 源代码+搭建部署教程 可二次定制开发

系统概述 在数字化时代,线上活动成为连接用户与组织的重要桥梁。为了高效地管理活动报名流程,一款灵活、易用的在线活动报名表单小程序显得尤为重要。本文旨在为开发者提供一套全面的解决方案,包括自定义在线活动报名表单小程序的源代码分析…...

数据分析入门指南:表结构数据(三)

在数字化转型的浪潮中,表结构数据作为企业决策支持系统的核心要素,其重要性日益凸显。本文深入剖析了表结构数据的本质特征、高效处理策略,并探讨了其在现代商业智能环境中的广泛应用,旨在为数据分析师与决策者提供前沿洞察与实战…...

凌凯科技前五大客户依赖症加剧:研发费用率骤降,应收账款大增

《港湾商业观察》黄懿 6月13日,上海凌凯科技股份有限公司(下称“凌凯科技”)在港交所提交上市申请,拟于主板上市,华泰国际为其独家保荐人。 凌凯科技致力于提供小分子化合物技术和产品解决方案,专注于制药…...

5 科大讯飞AI大赛:热力学定律的电池材料生产参数动态调控

赛题名称:基于热力学定律的电池材料生产参数动态调控挑战赛 赛题类型:数据挖掘 赛题任务:利用时空模型进行建模并预测匣钵实际温度 赛题链接:https://challenge.xfyun.cn/topic/info?typebattery-material&optiontjjg&…...

概论(二)随机变量

1.名词解释 1.1 样本空间 一次具体实验中所有可能出现的结果,构成一个样本空间。 1.2 随机变量 把结果抽象成数值,结果和数值的对应关系就形成了随机变量X。例如把抛一次硬币的结果,正面记为1,反面记为0。有变量相对应的就有自…...

Apache AGE 安装部署

AGE概述 概述 我们可以通过源码安装、拉取docker镜像运行、直接使用公有云三种方式中的任意一种来使用Apache AGE 获取 AGE 发布版本 可以在 https://github.com/apache/age/releases 找到发布版本和发布说明。 源代码 源代码可以在 https://github.com/apache/age 找到…...

Python29 Tensorflow的基本知识和使用

1. TensorFlow TensorFlow 是一个开源的机器学习框架,由 Google Brain 团队开发。它用于数据流图的计算,尤其擅长深度学习任务。在 TensorFlow 中,数据流图(Data Flow Graph)是其核心概念之一,它定义了计算…...

Linux操作系统上用到的磁盘分区管理工具

parted磁盘分区工具 磁盘格式&#xff1a;MBR, GPT, 这两种名称分别是硬盘里面分区表两种格式的称呼&#xff0c; 第一种MBR格式的分区表最大支持2TB的容量&#xff0c; 磁盘的三种分区主分区&#xff0c;扩展分区&#xff0c;逻辑分区&#xff0c;主分区扩展分区<4 第…...

Python数据结构的库之Fuk使用详解

概要 fuk 是一个用于处理 Python 数据结构的库,全称为 "Fast and Uncomplicated Kit"。它提供了一系列高效、简洁的数据结构实现,以及对 Python 内置数据结构的扩展。通过使用 fuk,开发者可以更加方便地处理列表、集合、字典等数据类型,提高代码的执行效率和可读…...

【STM32学习】cubemx配置,串口的使用,串口发送接收函数使用,以及串口重定义、使用printf发送

1、串口的基本配置 选择USART1&#xff0c;选择异步通信&#xff0c;设置波特率 选择后&#xff0c;会在右边点亮串口 串口引脚是用来与其他设备通信的&#xff0c;如在程序中打印发送信息&#xff0c;电脑上打开串口助手&#xff0c;就会收到信息。 串口的发送接收&#xff0…...

复现MiDAS文章:文章数据和代码

介绍 MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants 提供了全套的代码和数据&#xff0c;方便大家复现&#xff1a; github: https://github.com/ msdueholm/MiD…...

【Python专栏】Python的历史及背景介绍

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Python专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Python的背景介绍 关键词&#xff1a;Python、优缺点、领域 目录 …...

web端已有项目集成含UI腾讯IM

通过 npm 方式下载 TUIKit 组件&#xff0c;将 TUIKit 组件复制到自己工程的 src 目录下&#xff1a; npm i tencentcloud/chat-uikit-vue mkdir -p ./src/TUIKit && rsync -av --exclude{node_modules,package.json,excluded-list.txt} ./node_modules/tencentcloud/…...

IF不降反增!审稿速度,比我家网速还快!3本接受率高的医学期刊,赶紧码住!

&#x1f50d; 为什么选择这3本期刊&#xff1f; 今天老毕给大家分享3本医学 SCI&#xff0c;分别为Tumori Journal、Adipocyte以及Annals of Medicine。 这3本医学杂志&#xff0c;不仅审稿速度快&#xff0c;录用率还高&#xff0c;其中不乏接受率为48%的“毕业神刊”。2024年…...

怎样把视频字幕提取出来?分享4个零门槛的字幕提取工具

暑假正是弯道超车的好机会&#xff01;相信不少朋友都会选择宅在家自学网课。 不可否认的是&#xff0c;海量学习资源的确可以让学习变得更加便捷与自由。然而&#xff0c;如何高效地吸收和理解在线课程也就成为了一个关键问题。不敢想倘若此时能够拥有一款高效又实用的视频提…...

PostgreSQL 里怎样解决多租户数据隔离的性能问题?

文章目录 一、多租户数据隔离的性能问题分析&#xff08;一&#xff09;大规模数据存储和查询&#xff08;二&#xff09;并发访问和锁争用&#xff08;三&#xff09;索引维护成本高&#xff08;四&#xff09;资源分配不均 二、解决方案&#xff08;一&#xff09;数据分区&a…...

Oracle执行一条SQL的内部过程

一、SQL语句根据其功能主要可以分为以下几大类&#xff1a; 1. 数据查询语言&#xff08;DQL, Data Query Language&#xff09; 功能&#xff1a;用于从数据库中检索数据&#xff0c;常用于查询表中的记录。基本结构&#xff1a;主要由SELECT子句、FROM子句、WHERE子句等组成…...

SpringMVC的架构有什么优势?——控制器(一)

#SpringMVC的架构有什么优势&#xff1f;——控制器&#xff08;一&#xff09; 前言 关键字&#xff1a; 机器学习 人工智能 AI chatGPT 学习 实现 使用 搭建 深度 python 事件 远程 docker mysql安全 技术 部署 技术 自动化 代码 文章目录 控制器(Controller) 控制器是S…...

LabVIEW干涉仪测向系统

开发了一套基于LabVIEW的软件系统&#xff0c;结合硬件设备&#xff0c;构建一个干涉仪测向实验教学平台。该平台应用于信号处理课程&#xff0c;帮助学生将理论知识与实际应用相结合&#xff0c;深化对信号处理核心概念的理解和应用。 项目背景&#xff1a; 当前信号处理教学…...

JavaScript 模拟光标全选选中一段文字

在JavaScript中&#xff0c;如果你想要通过编程方式选择一段文本&#xff0c;你可以使用window.getSelection()和Range对象。以下是一个简单的例子&#xff0c;展示了如何使用这些对象来选中页面上的特定文本节点&#xff1a; function selectText(node) {if (window.getSelect…...

【算法】代码随想录之数组(更新中)

文章目录 前言 一、二分查找法&#xff08;LeetCode--704&#xff09; 二、移除元素&#xff08;LeetCode--27&#xff09; 前言 跟随代码随想录&#xff0c;学习数组相关的算法题目&#xff0c;记录学习过程中的tips。 一、二分查找法&#xff08;LeetCode--704&#xff0…...

Win-ARM联盟的端侧AI技术分析

Win-ARM联盟&#xff0c;端侧AI大幕将起 微软震撼发布全球首款AI定制Windows PC——Copilot PC&#xff0c;搭载全新NPU与重塑的Windows 11系统&#xff0c;纳德拉盛赞其为史上最快、最强、最智能的Windows PC。该设备算力需求高达40TOPS&#xff0c;支持语音翻译、实时绘画、文…...

MySQL常见的几种索引类型及对应的应用场景

MySQL 提供了多种索引类型&#xff0c;每种索引类型都有其特定的应用场景和优势。以下是 MySQL 中常见的几种索引类型及其具体应用场景&#xff1a; 1. B-Tree 索引 特点&#xff1a; B-Tree&#xff08;Balanced Tree&#xff0c;平衡树&#xff09;是 MySQL 的默认索引类型…...

如何利用java依赖jave-all-deps实现视频格式转换

视频格式转换是常见的需求&#xff0c;通过使用Java依赖库jave-all-deps可以实现视频格式的转换。本文将详细介绍在Java中如何利用jave-all-deps实现视频格式转换。 什么是jave-all-deps库&#xff1f; jave-all-deps是一款基于FFmpeg库的Java音视频编解码库。它提供了一系列AP…...

三端保险丝-锂电池BMS二次保护器件

三端保险丝&#xff0c;从其结构上来看&#xff0c;是一种芯片式表贴安装产品&#xff0c;通常包含三个端子。其中&#xff0c;两个端子由合金金属构成的保险丝串联而成&#xff0c;当电路中出现过流或短路故障时&#xff0c;保险丝能够迅速熔断&#xff0c;切断电路&#xff0…...

用户增长 - 私域 - 社群运营自检清单SOP(社群运营30问)

Check List: 1.你的目标用户是谁&#xff1f; 2.你的目标用户有哪些需要立马解决的需求&#xff1f;有哪些长期需求&#xff1f;这些需求的优先级是什么&#xff1f; 3.做社群的目的是什么&#xff1f; 4.你的用户和业务是否适合做社群&#xff1f; 5.你做哪类社群才能更好的帮…...

算法·高精度

高精度算法 分为四则运算加减乘除 适用条件 都高精度了&#xff0c;肯定时long long都会爆的情况——一般与阶乘有关 注意事项 用数组模拟位运算&#xff0c;最后在一起考虑进位 注意res[i1]res[i]/10; 是""不是 两数相加&#xff0c;相乘数组的新长度会变&…...

Docker搭建kafka+zookeeper以及Springboot集成kafka快速入门

参考文章 【Docker安装部署KafkaZookeeper详细教程】_linux arm docker安装kafka-CSDN博客 Docker搭建kafkazookeeper 打开我们的docker的镜像源配置 vim /etc/docker/daemon.json 配置 { "registry-mirrors": ["https://widlhm9p.mirror.aliyuncs.com"…...

东营网站app建设/网络营销的发展现状如何

全国英语等级考试(Public English Test System&#xff0c;简称PETS)是教育部考试中心设计并负责的全国性英语水平考试体系。作为中、英两国政府的教育交流合作项目&#xff0c;在设计过程中它得到了英国专家的技术支持。共有五个级别&#xff1a; PETS-1是初始级&#xff0c;…...

网站建设到一半想换一家/免费网页代码大全

一、一些必知参数 堆的分配参数 -Xmx&#xff1a;堆内存的最大大小&#xff08;max&#xff09;-Xms&#xff1a;堆内存的初始大小&#xff08;start&#xff09;-Xmn&#xff1a;新生代大小&#xff08;new&#xff09;-XX&#xff1a;NewRatio 老年代和新生代&#xff08;e…...

学习php网站开发/2022年十大流行语

UNIX Shell 里面比较字符写法-eq 等于; -ne 不等于;-gt 大于; -lt 小于 ;-le 小于等于; -ge 大于等于;-z 空串; -n 非空串; 两个字符相等; ! 两个字符不等无论什么编程语言都离不开条件判…...

做网站 绍兴/友链

1. Environment.GetFolderPath(Environment.SpecialFolder)Environment.SpecialFolder.ApplicationFolder即为Roaming文件夹的路径2. Environment.GetEnvironmentVariable(string)可遍历支持的类型&#xff1a; foreach (DictionaryEntry de in Environment.GetEnvironmentVari…...

深圳市企业服务体系平台建设方案/全网优化哪家好

以下介绍经常使用的集合类&#xff0c;这里不介绍集合类的使用方法&#xff0c;只介绍每个集合类的用途和特点&#xff0c;然后通过比较相关集合类的不同特点来让我们更深入的了解它们。Collection接口Collection是最基本的集合接口&#xff0c;一个Collection代表一组Object&a…...

wordpress 仿站/百度一下你就知道官网新闻

Java基础之&#xff1a;集合——Collection——ListList简单介绍List接口是Collection的子接口。List集合是有序的(输入和输出顺序不变)&#xff0c;且允许重复元素存在。List集合每个元素都有其对应的顺序索引&#xff0c;即List支持索引。List使用及常用方法首先是所有Collec…...