当前位置: 首页 > news >正文

【排序 - 选择排序优化版(利用堆排序)】

结合选择排序和堆排序的思路,可以通过利用堆数据结构来优化选择排序的过程,使得排序算法更加高效。在这种结合中,我们利用堆的特性来快速定位和选择未排序部分的最小元素,避免了选择排序中每次线性搜索的开销。

选择排序和堆排序结合的思路

选择排序的基本思想是每次从未排序的部分选择最小(或最大)的元素,放到已排序部分的末尾。结合堆排序的思路,我们可以利用最小堆来维护未排序部分的元素,每次从堆顶取出最小元素,放入已排序部分,然后调整堆,以保持堆的性质。

实现步骤

  1. 建立最小堆:将待排序的数组建立成一个最小堆。
  2. 选择最小元素:从堆顶(最小值)开始选择,将其放入已排序部分。
  3. 维护堆的性质:每次选择操作后,需要调整堆,使得剩余的元素依然构成最小堆。
  4. 重复以上步骤:直到所有元素都被排序。

C语言代码实现

下面是利用C语言实现结合选择排序和堆排序思路的示例代码:

#include <stdio.h>// 函数:对数组的子树以根节点 i 进行堆化,n 是堆的大小
void heapify(int arr[], int n, int i) {int smallest = i;  // 初始化最小值索引为 iint left = 2 * i + 1;  // 左子节点索引为 2*i + 1int right = 2 * i + 2;  // 右子节点索引为 2*i + 2// 如果左子节点比根节点小if (left < n && arr[left] < arr[smallest])smallest = left;// 如果右子节点比当前最小值小if (right < n && arr[right] < arr[smallest])smallest = right;// 如果最小值不是根节点if (smallest != i) {// 交换最小值和根节点int temp = arr[i];arr[i] = arr[smallest];arr[smallest] = temp;// 递归调整受影响的子树heapify(arr, n, smallest);}
}// 函数:进行堆排序
void heapSort(int arr[], int n) {// 构建堆(重新排列数组)for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);// 依次从堆中提取元素for (int i = n - 1; i > 0; i--) {// 将当前根节点移至末尾int temp = arr[0];arr[0] = arr[i];arr[i] = temp;// 对剩余堆进行堆化heapify(arr, i, 0);}
}// 函数:利用堆排序原理执行选择排序
void selectionHeapSort(int arr[], int n) {// 从数组构建最小堆heapSort(arr, n);// 现在 arr[0] 包含最小元素,将其移到末尾并重复for (int i = 0; i < n; i++) {// 交换 arr[0] 和 arr[i]int temp = arr[0];arr[0] = arr[i];arr[i] = temp;// 重建堆,排除已排序的最后一个元素heapify(arr, i, 0);}
}// 函数:打印数组
void printArray(int arr[], int n) {for (int i = 0; i < n; ++i)printf("%d ", arr[i]);printf("\n");
}// 主函数:测试以上功能
int main() {int arr[] = {12, 11, 13, 5, 6, 7};int n = sizeof(arr) / sizeof(arr[0]);printf("原始数组:\n");printArray(arr, n);selectionHeapSort(arr, n);printf("选择和堆排序结合后的排序数组:\n");printArray(arr, n);return 0;
}
}

示例说明

在上面的代码中:

  • heapify() 函数用于维护堆的性质。
  • heapSort() 函数用于对数组进行堆排序。
  • selectionHeapSort() 函数结合了选择排序和堆排序的思路,通过建立最小堆和每次选择操作来实现排序。
  • main() 函数中展示了如何使用 selectionHeapSort() 函数对数组进行排序,并输出排序后的结果。

这种结合选择排序和堆排序的方法利用了堆的优势,使得选择过程更高效,从而提升了整体排序算法的性能。

相关文章:

【排序 - 选择排序优化版(利用堆排序)】

结合选择排序和堆排序的思路&#xff0c;可以通过利用堆数据结构来优化选择排序的过程&#xff0c;使得排序算法更加高效。在这种结合中&#xff0c;我们利用堆的特性来快速定位和选择未排序部分的最小元素&#xff0c;避免了选择排序中每次线性搜索的开销。 选择排序和堆排序…...

PHP编程开发工具有哪些?

PHP的开发工具种类繁多&#xff0c;涵盖了从集成开发环境&#xff08;IDE&#xff09;、代码编辑器、调试器到版本控制工具和数据库管理工具等多个方面。以下是一些常见的PHP开发工具&#xff1a; 1. 集成开发环境&#xff08;IDE&#xff09; PhpStorm&#xff1a;由JetBrai…...

火柴棒图python绘画

使用Python绘制二项分布的概率质量函数&#xff08;PMF&#xff09; 在这篇博客中&#xff0c;我们将探讨如何使用Python中的scipy库和matplotlib库来绘制二项分布的概率质量函数&#xff08;PMF&#xff09;。二项分布是统计学中常见的离散概率分布&#xff0c;描述了在固定次…...

Nginx七层(应用层)反向代理:UWSGI代理uwsgi_pass篇

Nginx七层&#xff08;应用层&#xff09;反向代理 UWSGI代理uwsgi_pass篇 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this a…...

Effective C++笔记之二十一:One Definition Rule(ODR)

ODR细节有点复杂&#xff0c;跨越各种情况。基本内容如下&#xff1a; ●普通&#xff08;非模板&#xff09;的noninline函数和成员函数、noninline全局变量、静态数据成员在整个程序中都应当只定义一次。 ●class类型&#xff08;包括structs和unions&#xff09;、模板&…...

探索未来:Transformer模型在智能环境监测的革命性应用

探索未来&#xff1a;Transformer模型在智能环境监测的革命性应用 在当今数字化时代&#xff0c;环境监测正逐渐从传统的人工检测方式转变为智能化、自动化的系统。Transformer模型&#xff0c;作为深度学习领域的一颗新星&#xff0c;其在自然语言处理&#xff08;NLP&#x…...

Nginx中文URL请求404

这两天正在搞我的静态网站。方案是&#xff1a;从思源笔记Markdown笔记&#xff0c;用MkOcs build成静态网站&#xff0c;上传到到Nginx服务器。遇到一个问题&#xff1a;URL含有中文会404&#xff0c;全英文URL则正常访问。 ‍ 比如&#xff1a; ​​ ‍ 设置了utf-8 ht…...

33. 动量法(Momentum)介绍

1. 背景知识 在深度学习的优化过程中&#xff0c;梯度下降法&#xff08;Gradient Descent, GD&#xff09;是最基本的方法。然而&#xff0c;基本的梯度下降法在实际应用中存在收敛速度慢、容易陷入局部最小值以及在高维空间中振荡较大的问题。为了解决这些问题&#xff0c;人…...

Python | Leetcode Python题解之第228题汇总区间

题目&#xff1a; 题解&#xff1a; class Solution:def summaryRanges(self, nums: List[int]) -> List[str]:def f(i: int, j: int) -> str:return str(nums[i]) if i j else f{nums[i]}->{nums[j]}i 0n len(nums)ans []while i < n:j iwhile j 1 < n …...

物联网应用,了解一点 WWAN全球网络标准

WWAN/蜂窝无线电认证&#xff0c;对跨地区应用场景&#xff0c;特别重要。跟随全球业务的脚步&#xff0c;我们像大唐先辈一样走遍全球业务的时候&#xff0c;了解一点全球化的 知识信息&#xff0c;就显得有那么点意义。 NA &#xff08;北美&#xff09;&#xff1a;美国和加…...

如何指定多块GPU卡进行训练-数据并行

训练代码&#xff1a; train.py import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset import torch.nn.functional as F# 假设我们有一个简单的文本数据集 class TextDataset(Dataset):def __init__(self, te…...

RK3568笔记三十三: helloworld 驱动测试

若该文为原创文章&#xff0c;转载请注明原文出处。 报着学习态度&#xff0c;接下来学习驱动是如何使用的&#xff0c;从简单的helloworld驱动学习起。 开始编写第一个驱动程序—helloworld 驱动。 一、环境 1、开发板&#xff1a;正点原子的ATK-DLRK3568 2、系统&#xf…...

【智能制造-14】机器视觉软件

CCD相机和COMS相机? CCD&#xff08;Charge-Coupled Device&#xff09;相机和CMOS&#xff08;Complementary Metal-Oxide-Semiconductor&#xff09;相机是两种常见的数字图像传感器技术&#xff0c;用于捕捉和处理图像。 CCD相机&#xff1a; CCD相机使用一种称为CCD的光电…...

MVC分页

public ActionResult Index(int ? page){IPagedList<EF.ACCOUNT> userPagedList;using (EF.eMISENT content new EF.eMISENT()){第几页int pageNumber page ?? 1;每页数据条数&#xff0c;这个可以放在配置文件中int pageSize 10;//var infoslist.C660List.OrderBy(…...

webGL可用的14种3D文件格式,但要具体问题具体分析。

hello&#xff0c;我威斯数据&#xff0c;你在网上看到的各种炫酷的3d交互效果&#xff0c;背后都必须有三维文件支撑&#xff0c;就好比你网页的时候&#xff0c;得有设计稿源文件一样。WebGL是一种基于OpenGL ES 2.0标准的3D图形库&#xff0c;可以在网页上实现硬件加速的3D图…...

HybridCLR原理中的重点总结

序言 该文章以一个新手的身份&#xff0c;讲一下自己学习的经过&#xff0c;大家更快的学习HrbirdCLR。 我之前的两个Unity项目中&#xff0c;都使用到了热更新功能&#xff0c;而热更新的技术栈都是用的HybridCLR。 第一个项目本身虽然已经集成好了热更逻辑&#xff08;使用…...

昇思学习打卡-14-ResNet50迁移学习

文章目录 数据集可视化预训练模型的使用部分实现 推理 迁移学习&#xff1a;在一个很大的数据集上训练得到一个预训练模型&#xff0c;然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章学习使用的是前面学过的ResNet50&#xff0c;使用迁移学…...

软件开发面试题C#,.NET知识点(续)

1.C#中的封装是什么&#xff0c;以及它的重要性。 封装&#xff08;Encapsulation&#xff09; 是面向对象编程&#xff08;OOP&#xff09;的一个基本概念。它指的是将对象的状态&#xff08;属性&#xff09;和行为&#xff08;方法&#xff09;绑定在一起&#xff0c;并且将…...

2019年美赛题目Problem A: Game of Ecology

本题分析&#xff1a; 本题想要要求从实际生物角度出发&#xff0c;对权力游戏中龙这种虚拟生物的生态环境和生物特性进行建模&#xff0c;感觉属于比较开放类型的题目&#xff0c;重点在于参考生物的选择&#xff0c;龙虽然是虚拟的但是龙的生态特性可以参考目前生物圈里存在…...

沙龙回顾|MongoDB如何充当企业开发加速器?

数据不仅是企业发展转型的驱动力&#xff0c;也是开发者最棘手的问题。前日&#xff0c;MongoDB携手阿里云、NineData在杭州成功举办了“数据驱动&#xff0c;敏捷前行——MongoDB企业开发加速器”技术沙龙。此次活动吸引了来自各行各业的专业人员&#xff0c;共同探讨MongoDB的…...

云端编码:将您的技术API文档安全存储在iCloud的最佳实践

云端编码&#xff1a;将您的技术API文档安全存储在iCloud的最佳实践 作为一名技术专业人士&#xff0c;管理不断增长的API文档库是一项挑战。iCloud提供了一个无缝的解决方案&#xff0c;允许您在所有设备上存储、同步和访问您的个人技术API文档。本文将指导您如何在iCloud中高…...

在Spring Boot项目中集成单点登录解决方案

在Spring Boot项目中集成单点登录解决方案 大家好&#xff0c;我是微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 在现代的企业应用中&#xff0c;单点登录&#xff08;Single Sign-On, SSO&#xff09;解决方案是确保用户…...

Java-常用API

1-Java API &#xff1a; 指的就是 JDK 中提供的各种功能的 Java类。 2-Scanner基本使用 Scanner&#xff1a; 一个简单的文本扫描程序&#xff0c;可以获取基本类型数据和字符串数据 构造方法&#xff1a; Scanner(InputStream source)&#xff1a;创建 Scanner 对象 Sy…...

Python从Excel表中查找指定数据填入新表

#读取xls文件中的数据 import xlrd file "原表.xls" wb xlrd.open_workbook(file) #读取工作簿 ws wb.sheets()[0] #选第一个工作表 data [] for row in range(7, ws.nrows): name ws.cell(row, 1).value.strip() #科室名称 total1 ws.cell(row, 2…...

从零开始实现大语言模型(三):Token Embedding与位置编码

1. 前言 Embedding是深度学习领域一种常用的类别特征数值化方法。在自然语言处理领域&#xff0c;Embedding用于将对自然语言文本做tokenization后得到的tokens映射成实数域上的向量。 本文介绍Embedding的基本原理&#xff0c;将训练大语言模型文本数据对应的tokens转换成Em…...

视频怎么压缩变小?最佳视频压缩器

即使在云存储和廉价硬盘空间时代&#xff0c;大视频文件使用起来仍然不方便。无论是存储、发送到电子邮件帐户还是刻录到 DVD&#xff0c;拥有最好的免费压缩软件可以确保您快速缩小文件大小&#xff0c;而不必担心视频质量下降。继续阅读以探索一些顶级最佳 免费视频压缩器选项…...

LLM - 绝对与相对位置编码 与 RoPE 旋转位置编码 源码

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/140281680 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Transformer 是基于 MHSA (多头自注意力),然而,MHSA 对于位置是不敏感…...

B3917 [语言月赛 202401] 小跳蛙

OK 挠~ stop here~ 好啊&#xff0c;现在呢&#xff0c;把手头的事情先放一放啊&#xff0c;我们来做道练习 OK&#xff1f; 好啊来&#xff1a; 小跳蛙 题目描述 有 &#x1d45b;−1 只小跳蛙在池塘中&#xff0c;依次被编号为 1,2,⋯ ,&#x1d45b;−1。池塘里有 &am…...

Bash ——shell

Bash作为用户与操作系统之间的接口&#xff0c;让用户通过命令行输入各种指令来控制和操作计算机系统。 shell的两种解释&#xff1a; 1.linux命令解释器 Terminal 终端 ——》shell命令 ——》 Linux kernel &#xff08;内核&#xff09; Linux内核的作用&#xff1a; 1.…...

PyTorch复现PointNet——模型训练+可视化测试显示

因为项目涉及到3D点云项目&#xff0c;故学习下PointNet这个用来处理点云的神经网络 论文的话&#xff0c;大致都看了下&#xff0c;网络结构有了一定的了解&#xff0c;本博文主要为了下载调试PointNet网络源码&#xff0c;训练和测试调通而已。 我是在Anaconda下创建一个新的…...

做我网站/深圳网络推广建站

9月1日晚间&#xff0c;华为在德国柏林国际电子消费展览会(IFA)上举行媒体沟通会&#xff0c;正式发布华为EMUI 9.0系统。全新的EMUI 9.0系统基于Android P打造&#xff0c;官方介绍该系统流畅度提升12.9%&#xff0c;App启动更加快速。而且EMUI 9.0系统还带来了GPU Turbo 2.0技…...

做二手房的端口网站/下载百度网盘app

前言 在项目中频繁遇到数组、集合和泛型&#xff0c;在使用vue时&#xff0c;用到最多的是数组&#xff1b;在后台时使用最多的是泛型&#xff0c;有时还用到IList&#xff0c;下面来学习一下它们之间的关系。 正文 数组 概念 一组类型相同的有序数据&#xff0c;它是…...

陕西省住房和城乡建设厅网站/互联网销售包括哪些

拓扑图判环使用拓扑排序判断无向图和有向图中是否存在环的区别在于&#xff1a; 在判断无向图中是否存在环时&#xff0c;是将所有度 < 1 的结点入队&#xff1b; 在判断有向图中是否存在环时&#xff0c;是将所有入度 0 的结点入队。...

0基础做下载网站/郑州网站建设方案

正向代理和反向代理的区别&#xff1f; 正向代理和反向代理的本质都是代为收发请求和响应。 正向代理是一个位于客户端和目标服务器之间的代理服务器。为了从原始服务器取得内容&#xff0c;客户端向代理服务器发送一个请求&#xff0c;并且指定目标服务器&#xff0c;之后代理…...

药企做网站需要哪些手续/站长工具的网址

虚拟机中Linux系统配置YUM源 1.首先我们查看自己的虚拟机有没有yum源&#xff0c;命令为 [rootred ~]# ls /etc/yum.repos.d/ (没有yum源&#xff09;如果这里显示找不到文件&#xff0c;就代表没有yum源&#xff0c;如果显示有文件&#xff0c;那就代表有yum源。 2.没有yum源…...

上海企业网站模板建站/seo自学网官方

我们说Java是一种面向对象编程的语言&#xff0c;而对象是把数据及对数据的操作方法放在一起&#xff0c;作为一个相互依存的整体&#xff0c;对同类对象抽象出其共性&#xff0c;便是Java中的类&#xff0c;我们可以用类描述世间万物&#xff0c;也可以说万物皆对象。但是这里…...