当前位置: 首页 > news >正文

Redis实践

Redis实践

使用复杂度高的命令

如果在使用Redis时,发现访问延迟突然增大,如何进行排查?

首先,第一步,建议你去查看一下Redis的慢日志。Redis提供了慢日志命令的统计功能,我们通过以下设置,就可以查看有哪些命令在执行时延迟比较大。

首先设置Redis的慢日志阈值,只有超过阈值的命令才会被记录,这里的单位是微妙,例如设置慢日志的阈值为5毫秒,同时设置只保留最近1000条慢日志记录:

# 命令执行超过5毫秒记录慢日志
CONFIG SET slowlog-log-slower-than 5000
# 只保留最近1000条慢日志
CONFIG SET slowlog-max-len 1000

设置完成之后,所有执行的命令如果延迟大于5毫秒,都会被Redis记录下来,我们执行SLOWLOG get 5​查询最近5条慢日志:

127.0.0.1:6379> SLOWLOG get 5
1) 1) (integer) 32693       # 慢日志ID2) (integer) 1593763337  # 执行时间3) (integer) 5299        # 执行耗时(微妙)4) 1) "LRANGE"           # 具体执行的命令和参数2) "user_list_2000"3) "0"4) "-1"
2) 1) (integer) 326922) (integer) 15937633373) (integer) 50444) 1) "GET"2) "book_price_1000"
...

通过查看慢日志记录,我们就可以知道在什么时间执行哪些命令比较耗时,如果你的业务经常使用O(n)以上复杂度的命令,例如sort​、sunion​、zunionstore​,或者在执行O(n)命令时操作的数据量比较大,这些情况下Redis处理数据时就会很耗时。

如果你的服务请求量并不大,但Redis实例的CPU使用率很高,很有可能是使用了复杂度高的命令导致的。

存储大key

如果查询慢日志发现,并不是复杂度较高的命令导致的,例如都是SET​、DELETE​操作出现在慢日志记录中,那么你就要怀疑是否存在Redis写入了大key的情况。

Redis在写入数据时,需要为新的数据分配内存,当从Redis中删除数据时,它会释放对应的内存空间。

如果一个key写入的数据非常大,Redis在分配内存时也会比较耗时。同样的,当删除这个key的数据时,释放内存也会耗时比较久

你需要检查你的业务代码,是否存在写入大key的情况,需要评估写入数据量的大小,业务层应该避免一个key存入过大的数据量。

那么有没有什么办法可以扫描现在Redis中是否存在大key的数据吗?

Redis也提供了扫描大key的方法:

redis-cli -h <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mi>o</mi><mi>s</mi><mi>t</mi><mo>−</mo><mi>p</mi></mrow><annotation encoding="application/x-tex">host -p </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"><span class="mord mathnormal">h</span><span class="mord mathnormal">os</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"><span class="mord mathnormal">p</span></span></span></span></span>port --bigkeys -i 0.01
</span></span></span></span>

使用上面的命令就可以扫描出整个实例key大小的分布情况,它是以类型维度来展示的。

需要注意的是当我们在线上实例进行大key扫描时,Redis的QPS会突增,为了降低扫描过程中对Redis的影响,我们需要控制扫描的频率,使用i​参数控制即可,它表示扫描过程中每次扫描的时间间隔,单位是秒。

使用这个命令的原理,其实就是Redis​在内部执行scan​命令,遍历所有key​,然后针对不同类型的key​执行strlen​、llen​、hlen​、scard​、zcard​来获取字符串的长度以及容器类型(list/dict/set/zset)​的元素个数。

而对于容器类型的key,只能扫描出元素最多的key​,但元素最多的key​不一定占用内存最多,这一点需要我们注意下。不过使用这个命令一般我们是可以对整个实例中key​分布情况有比较清晰的了解。

针对大key​的问题,Redis​官方在4.0版本推出了lazy-free​的机制,用于异步释放大key​的内存,降低对Redis​性能的影响。

即使这样,我们也不建议使用大key,大key在集群的迁移过程中,也会影响到迁移的性能

集中过期

有时你会发现,平时在使用Redis​时没有延时比较大的情况,但在某个时间点突然出现一波延时,而且报慢的时间点很有规律,例如某个整点,或者间隔多久就会发生一次。

如果出现这种情况,就需要考虑是否存在大量key集中过期的情况。

如果有大量的key在某个固定时间点集中过期,在这个时间点访问Redis时,就有可能导致延迟增加。

解决方案是,在集中过期时增加一个随机时间,把这些需要过期的key的时间打散即可

伪代码可以这么写:

# 在过期时间点之后的5分钟内随机过期掉
redis.expireat(key, expire_time + random(300))

实例内存达到上限

有时我们把Redis当做纯缓存使用,就会给实例设置一个内存上限maxmemory​,然后开启LRU淘汰策略。

当实例的内存达到了maxmemory​后,你会发现之后的每次写入新的数据,有可能变慢了。

导致变慢的原因是,当Redis内存达到maxmemory​后,每次写入新的数据之前,必须先踢出一部分数据,让内存维持在maxmemory​之下。

这个踢出旧数据的逻辑也是需要消耗时间的,而具体耗时的长短,要取决于配置的淘汰策略:

  • allkeys-lru:不管key是否设置了过期,淘汰最近最少访问的key
  • volatile-lru:只淘汰最近最少访问并设置过期的key
  • allkeys-random:不管key是否设置了过期,随机淘汰
  • volatile-random:只随机淘汰有设置过期的key
  • allkeys-ttl:不管key是否设置了过期,淘汰即将过期的key
  • noeviction:不淘汰任何key,满容后再写入直接报错
  • allkeys-lfu:不管key是否设置了过期,淘汰访问频率最低的key(4.0+支持)
  • volatile-lfu:只淘汰访问频率最低的过期key(4.0+支持)

我们最常使用的一般是allkeys-lru​或volatile-lru​策略,它们的处理逻辑是,每次从实例中随机取出一批key​(可配置),然后淘汰一个最少访问的key​,之后把剩下的key​暂存到一个池子中,继续随机取出一批key​,并与之前池子中的key​比较,再淘汰一个最少访问的key​。以此循环,直到内存降到maxmemory​之下。

如果使用的是allkeys-random​或volatile-random​策略,那么就会快很多,因为是随机淘汰,那么就少了比较key​访问频率时间的消耗了,随机拿出一批key​后直接淘汰即可,因此这个策略要比上面的LRU​策略执行快一些。

fork耗时严重

如果你的Redis开启了自动生成RDB和AOF重写功能,那么有可能在后台生成RDB和AOF重写时导致Redis的访问延迟增大,而等这些任务执行完毕后,延迟情况消失。

遇到这种情况,一般就是执行生成RDB和AOF重写任务导致的。

生成RDB​和AOF​都需要父进程fork​出一个子进程进行数据的持久化,在fork​执行过程中,父进程需要拷贝内存页表给子进程,如果整个实例内存占用很大,那么需要拷贝的内存页表会比较耗时,此过程会消耗大量的CPU​资源,在完成fork​之前,整个实例会被阻塞住,无法处理任何请求,如果此时CPU​资源紧张,那么fork​的时间会更长,甚至达到秒级。这会严重影响Redis​的性能。

我们可以执行info​命令,查看最后一次fork​执行的耗时latest_fork_usec​,单位微妙。这个时间就是整个实例阻塞无法处理请求的时间。

要想避免这种情况,我们需要规划好数据备份的周期,建议在从节点上执行备份,而且最好放在低峰期执行。如果对于丢失数据不敏感的业务,那么不建议开启RDB​和AOF​重写功能。

另外,fork的耗时也与系统有关,如果把Redis部署在虚拟机上,那么这个时间也会增大。所以使用Redis时建议部署在物理机上,降低fork的影响。

使用Swap

如果你发现Redis突然变得非常慢,每次访问的耗时都达到了几百毫秒甚至秒级,那此时就检查Redis​是否使用到了Swap​,这种情况下Redis​基本上已经无法提供高性能的服务。

我们知道,操作系统提供了Swap机制,目的是为了当内存不足时,可以把一部分内存中的数据换到磁盘上,以达到对内存使用的缓冲。

但当内存中的数据被换到磁盘上后,访问这些数据就需要从磁盘中读取,这个速度要比内存慢太多!

尤其是针对Redis这种高性能的内存数据库来说,如果Redis中的内存被换到磁盘上,对于Redis这种性能极其敏感的数据库,这个操作时间是无法接受的。

我们需要检查机器的内存使用情况,确认是否确实是因为内存不足导致使用到了Swap​。

如果确实使用到了Swap​,要及时整理内存空间,释放出足够的内存供Redis​使用,然后释放Redis​的Swap​,让Redis​重新使用内存。

释放Redis​的Swap​过程通常要重启实例,为了避免重启实例对业务的影响,一般先进行主从切换,然后释放旧主节点的Swap​,重新启动服务,待数据同步完成后,再切换回主节点即可。

可见,当Redis​使用到Swap​后,此时的Redis​的高性能基本被废掉,所以我们需要提前预防这种情况。

我们需要对Redis机器的内存和Swap使用情况进行监控,在内存不足和使用到Swap时及时报警出来,及时进行相应的处理

网卡负载过高

特点就是从某个时间点之后就开始变慢,并且一直持续。这时你需要检查一下机器的网卡流量,是否存在网卡流量被跑满的情况。

网卡负载过高,在网络层和TCP层就会出现数据发送延迟、数据丢包等情况。Redis的高性能除了内存之外,就在于网络IO,请求量突增会导致网卡负载变高。

相关文章:

Redis实践

Redis实践 使用复杂度高的命令 如果在使用Redis时&#xff0c;发现访问延迟突然增大&#xff0c;如何进行排查&#xff1f; 首先&#xff0c;第一步&#xff0c;建议你去查看一下Redis的慢日志。Redis提供了慢日志命令的统计功能&#xff0c;我们通过以下设置&#xff0c;就…...

【Lora模型推荐】Stable Diffusion创作具有玉石翡翠质感的图标设计

站长素材AI教程是站长之家旗下AI绘图教程平台 海量AI免费教程&#xff0c;每日更新干货内容 想要深入学习更多AI绘图教程&#xff0c;请访问站长素材AI教程网&#xff1a; AI教程_深度学习入门指南 - 站长素材 (chinaz.com) logo版权归各公司所有&#xff01;本笔记仅供AIGC…...

vscode 远程开发

目录 vscode 远程连接 选择 Python 环境 vscode 远程连接 按 CtrlShiftP 打开命令面板。输入并选择 Remote-SSH: Open SSH Configuration File...。选择 ~/.ssh/config 文件&#xff08;如果有多个选项&#xff09;。在打开的文件中添加或修改你的 SSH 配置。 这个可以右键…...

前端Vue组件化实践:打造灵活可维护的地址管理组件

随着前端技术的不断演进&#xff0c;复杂度和开发难度也随之上升。传统的一体化开发模式使得每次小小的修改或功能增加都可能牵一发而动全身&#xff0c;严重影响了开发效率和维护成本。组件化开发作为一种解决方案&#xff0c;通过模块化、独立化的开发方式&#xff0c;实现了…...

虚幻引擎ue5游戏运行界面白茫茫一片,怎么处理

根剧下图顺序即可调节游戏运行界面光照问题&#xff1a; 在大纲里找到post&#xff0c;然后选中它&#xff0c;找到Exposure 把最低亮度和最高亮度的0改为1即可...

《代理选择与反爬虫策略探究:如何优化网络爬虫效率与稳定性》

代理IP如何选以及常见反爬策略 为什么需要代理&#xff1f; 因为有的网站会封IP&#xff0c;用户如果没有登录&#xff0c;那IP就是身份标识&#xff0c;如果网站发现用户行为异常就非常可能封IP 什么是代理IP 就是让一个人帮你转交请求&#xff0c;帮你转交的人对面不熟&a…...

Kotlin Flow 防抖 节流

防抖和节流是针对响应跟不上触发频率这类问题的两种解决方案。 一:防抖&#xff08;debounce&#xff09;的概念&#xff1a; 防抖是指当持续触发事件时&#xff0c;一定时间段内没有再触发事件&#xff0c;事件处理函数才会执行一次&#xff0c; 如果设定时间到来之前&#x…...

Android Studio下载与安装

Android Studio下载与安装_android studio下载安装-CSDN博客...

【LC刷题】DAY24:122 55 45 1005

122. 买卖股票的最佳时机 II class Solution { public:int maxProfit(vector<int>& prices) {int result 0;for(int i 1; i < prices.size(); i ){result max(prices[i] - prices[ i - 1], 0);}return result;} };55. 跳跃游戏 link class Solution { public…...

从零开始的python学习生活2

接上封装 class Phone:__volt0.5def __keepsinglecore(self):print("让cpu以单核运行")def if5G(self):if self.__volt>1:print("5G通话已开启")else:self.__keepsinglecore()print("电量不足&#xff0c;无法使用5G通话&#xff0c;已经设置为单…...

【并发编程】进程 线程 协程

进程&#xff08;Process&#xff09;、线程&#xff08;Thread&#xff09;和协程&#xff08;Coroutine&#xff09;构成了计算机科学中实现任务并发执行的三种核心抽象机制。通常&#xff0c;为了提高程序的执行效率&#xff0c;开发者会根据应用场景和性能需求&#xff0c;…...

Vue的生命周期函数有哪些?详细说明

Vue.js 的生命周期函数包括以下几个阶段&#xff0c;每个阶段都有相应的钩子函数可以用来在特定时机执行自定义的逻辑。这些生命周期钩子函数使得我们可以在组件的不同阶段进行操作&#xff0c;从而管理组件的状态和行为。 1. beforeCreate&#xff1a; - 描述&#xff1a;…...

大语言模型应用--AI工程化落地

文章目录 大语言模型概述什么是大语言模型什么是机器学习什么是深度学习 理解大语言模型历史沿革关键 AIGC系统AI工程化项目的落地落地的方法Prompt工程&#xff08;第一阶段&#xff09;RAG检索&#xff08;第二阶段&#xff09;训练特定功能模型&#xff08;第三阶段&#xf…...

我会什么开发技能

java我会什么&#xff1f; 一、并发编程 1、并发编程&#xff1a;jdk中的courren包只能够类实现&#xff08;seamplore&#xff0c;CountDownLaunch&#xff0c;Pharse&#xff0c;CycliBarrier&#xff0c;CompletableFuture&#xff09;&#xff0c;AQS的原理&#xff0c;线…...

Run LoongArch64 Alpine VM on x86_64

一、Build from source(build on x86_64) Obtain the latest libvirt, virt-manager, and qemu source code, compile and install them. 1.1 Build libvirt from source sudo apt-get update sudo apt-get install augeas-tools bash-completion debhelper-compat dh-apparm…...

4层负载均衡和7层负载均衡

四层负载均衡&#xff08;Layer 4 Load Balancing&#xff09;指的是在网络传输层&#xff08;TCP/IP模型中的第四层&#xff09;进行负载均衡的技术。四层负载均衡通常使用IP地址、端口号和协议等信息来将网络流量分配到多个服务器上。它主要关心网络层的信息&#xff0c;不涉…...

前端Vue组件化实践:打造仿京东天猫商品属性选择器组件

在前端开发领域&#xff0c;随着业务需求的日益复杂和技术的不断进步&#xff0c;传统的整体式应用开发模式已逐渐显得捉襟见肘。面对日益庞大的系统&#xff0c;每次微小的功能修改或增加都可能导致整个逻辑结构的重构&#xff0c;形成牵一发而动全身的困境。为了解决这一问题…...

智慧城市3d数据可视化系统提升信息汇报的时效和精准度

在信息大爆炸的时代&#xff0c;数据的力量无可估量。而如何将这些数据以直观、高效的方式呈现出来&#xff0c;成为了一个亟待解决的问题。为此&#xff0c;我们推出了全新的3D可视化数据大屏系统&#xff0c;让数据“跃然屏上”&#xff0c;助力您洞察先机&#xff0c;决胜千…...

Git 详解(原理、使用)

git 快速上手请看这篇博客 Git 快速上手 1. 什么是 Git Git 是目前最主流的一个版本控制器&#xff0c;并且是分布式版本控制系统&#xff0c;可以控制电脑上所有格式的文档 版本控制器&#xff1a;记录每次修改以及版本迭代的管理系统 对于文本文件&#xff0c;可以记录每次…...

android11为开机动画添加铃声(语音)

一、碰到的问题 1、第一次开机无铃声 2、开机时铃声和动画不同步&#xff0c;开头的铃声会丢失 3、开机时铃声/动画不能完全播放完 二、解决 以下为添加的patch /开机铃声不同步&#xff0c;语音第一段无声 diff --git a/media/libmediaplayerservice/MediaPlayerService…...

使用 Akshare 下载国内的期货(主力连续)、股票和指数的历史行情数据

本文介绍如何使用 akshare 下载国内期货、股票和指数的历史行情数据。 Akshare 是一个丰富的金融数据查询的 Python 库&#xff0c;提供了大量的金融数据接口。本文将详细介绍如何使用 Akshare 下载期货、股票和指数数据&#xff0c;并提供完整的代码示例&#xff0c;以求大家…...

【React】Google 账号之个性化一键登录按钮功能

“使用 Google 帐号登录”功能可快速管理网站上的用户身份验证。用户登录 Google 账号、表示同意&#xff0c;并安全地与平台共享其个人基础资料信息。 官方文档&#xff1a;链接 一、获取 Google API 客户端 ID 打开 Google API 控制台 中的凭据页面 创建或选择 Google API 项…...

MySQL已经连接对应数据库,但mapper中表名仍报错

如图所示&#xff0c;已经连接对应数据库但还要在其中选择&#xff0c;表多了一个个选会很麻烦 此时找到下图界面 选中对应数据库应用&#xff0c;项目中所有mapper就能找到对应表啦...

CentOS 7:停止更新后如何下载软件?

引言 CentOS 7 是一个广受欢迎的 Linux 发行版&#xff0c;它为企业和开发者提供了一个稳定、安全、且免费的操作系统环境。然而&#xff0c;随着时间的推移&#xff0c;CentOS 7 的官方支持已经进入了维护阶段&#xff0c;这意味着它将不再收到常规的更新和新功能&#xff0c;…...

MySQL GROUP_CONCAT 函数详解与实战应用

提示&#xff1a;在需要将多个值组合成一个列表时&#xff0c;GROUP_CONCAT() 函数为 MySQL 提供了一种强大的方式来处理数据 文章目录 前言什么是 GROUP_CONCAT()基本语法 示例使用 GROUP_CONCAT()去除重复值排序结果 前言 提示&#xff1a;这里可以添加本文要记录的大概内容…...

MATLAB Gazebo联合仿真

准备仿真环境&#xff1a;在Gazebo中设置仿真场景&#xff0c;包括机器人模型、环境布局、传感器和执行器等。编写MATLAB脚本&#xff1a;在MATLAB中编写控制算法和数据处理脚本&#xff0c;用于接收Gazebo中的传感器数据&#xff0c;并生成控制命令。建立通信&#xff1a;通过…...

Vue3 pdf.js将二进制文件流转成pdf预览

好久没写东西&#xff0c;19年之前写过一篇Vue2将pdf二进制文件流转换成pdf文件&#xff0c;如果Vue2换成Vue3了&#xff0c;顺带来一篇文章&#xff0c;pdf.js这个东西用来解决内网pdf预览&#xff0c;是个不错的选择。 首先去pdfjs官网&#xff0c;下载需要的文件 然后将下载…...

【机器学习】逻辑回归的原理、应用与扩展

文章目录 一、逻辑回归概述二、Sigmoid函数与损失函数2.1 Sigmoid函数2.2 损失函数 三、多分类逻辑回归与优化方法3.1 多分类逻辑回归3.2 优化方法 四、特征离散化 一、逻辑回归概述 逻辑回归是一种常用于分类问题的算法。大家熟悉的线性回归一般形式为 Y a X b \mathbf{Y}…...

Ubuntu22.04系统装好后左上角下划线闪烁不开机(N卡)

折腾了半天以为是ubuntu的系统和硬件不匹配&#xff0c; 最后发现的确有点关系&#xff0c; 就是显卡驱动的问题 解决办法&#xff1a; 1. 进入到safty模式下&#xff0c; 然后配好网络环境 2. 移除所有的驱动相关的包&#xff0c; sudo apt-get remove --purge nvidia* 3.…...

Leetcode刷题4--- 寻找两个正序数组的中位数 Python

目录 题目及分析方法一&#xff1a;直接合并后排序方法二&#xff1a;二分查找法 题目及分析 &#xff08;力扣序号4&#xff1a;[寻找两个正序数组的中位数](https://leetcode.cn/problems/median-of-two-sorted-arrays/description/&#xff09; 给定两个大小分别为 m 和 n …...

做网站需要写程序/江苏网站建站系统哪家好

使用情景如下&#xff1a;在访问 http://www.ehotel.com/admin/admin/hycgl.html 的时候、跳转到 http://www.ehotel.com/admin/index.php/admin/hycgl.html &#xff1b;在访问 http://www.ehotel.com/的时候、跳转到 http://www.ehotel.com/index.php/&#xff1b;//nginx.c…...

体育网站怎样做香功/谷歌推广怎么样

本文与大家分享一些Python编程语言的入门书籍&#xff0c;其中不乏经典。我在这里分享的&#xff0c;大部分是这些书的英文版&#xff0c;如果有中文版的我也加上了。有关书籍的介绍&#xff0c;大部分截取自是官方介绍。Python基础教程&#xff08;Begining Python&#xff09…...

河北中保建设集团网站首页/400个成品短视频

2019独角兽企业重金招聘Python工程师标准>>> Connector配置 Connector 属于 StandardService 里的一个组件&#xff0c;可以在 server.xml 中配置&#xff0c;指定协议、端口、超时时间等。 1 2 3 4 <Service name"Catalina"><Connector port&q…...

组服务器做网站/seo排名公司

一、码云链接 项目名称FAO 码云链接 二、需求分析 实现一个命令行程序&#xff1b;自动生成小学四则运算题目(加、减、乘、除)支持整数支持多运算符&#xff08;比如生成包含100个运算符的题目&#xff09;支持真分数统计正确率三、设计思路 首先设计一个基础的数据类&#xff…...

主流科技类的网站都有哪些/抖音关键词推广

最近学习AIR 发现有篇好文章&#xff0c;翻译下&#xff0c;和大家共享。原文地址:[url]http://www.smashingmagazine.com/2009/04/07/adobe-air-developers-toolbox-resources-and-tutorials/[/url]现以生成电子版&#xff0c;下载地址:[url]http://xiayuanfeng.javaeye.com/b…...

a0000网站建设/汕头百度推广公司

版本3.2.3 1、数据库操作中的连贯操作table()&#xff0c;在查询的时候可以切换表&#xff0c;但是在插入&#xff0c;更新的时候请不要使用。例如 D(user)->table(auth)->add($data); 操作会出问题&#xff0c;因为插入的时候会把非user表的字段删除 2.数据库操作的crea…...