当前位置: 首页 > news >正文

机器学习中的数学原理——F值与交叉验证

通过这篇博客,你将清晰的明白什么是F值、交叉验证。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——F值与交叉验证》

文章目录

  • 一、F值
  • 二、交叉验证

一、F值

在之前的学习中,我们已经学习了精确率Precision和召回率Recall,有没有这样一个值能够综合得考虑这两个值呢?如果只是简单地计算平均值并不算很好的方法。假设现在有两个模型,它们的精确率和召回率是这样的:
在这里插入图片描述
模型 B 的召回率是 1.0,也就是说所有的 Positive 数据都被分类为 Positive 了,但是精确率也实在是太低了。如果将所有的数据都分类为 Positive,那么召回率就是 1.0。但是这样一来,Negative 数据也会被分类为 Positive,所以精确率会变得很低。看一下两个模型的平均值,会发现模型 B 的更高。但它是把所有数据都分类为 Positive 的模型,精确率极低,仅为 0.02,并不能说它是好模型。
所以就出现了评定综合性能的指标 F 值。下面表达式中的 Fmeasure就是 F 值,Precision 是前面说的精确率,Recall 是召回率。
在这里插入图片描述
在这里插入图片描述

精确率和召回率只要有一个低,就会拉低 F 值,该指标考虑到了精确率和召回率的平衡。计算一下前面两个模型的 F 值就知道了:

在这里插入图片描述
除 F1 值之外,还有一个带权重的 F 值指标:
在这里插入图片描述
β 指的是权重,我们可以认为 F 值指的是带权重的 F 值,当权重为 1 时才是刚才介绍的 F1 值。带权重的 F 值更通用。F1 值在数学上是精确率和召回率的调和平均值。关于调和平均值,不需要太深入地了解。

二、交叉验证

把全部训练数据分为测试数据和训练数据的做法称为交叉验证。这是非常重要的方法,一定要记住哦。交叉验证的方法中,尤为有名的是 K 折交叉验证,掌握这种方法很有好处。

K 折交叉验证步骤如下:

  • 把全部训练数据分为 K 份
  • 将 K − 1 份数据用作训练数据,剩下的 1 份用作测试数据
  • 每次更换训练数据和测试数据,重复进行 K 次交叉验证
  • 最后计算 K 个精度的平均值,把它作为最终的精度

假如我们要进行 4 折交叉验证,那么就会这样测量精度
在这里插入图片描述
如果全部训练数据的量较大,这种方法必须训练多次,会比较花时间,不切实际地增加 K 值会非常耗费时间,所以我们必须要确
定一个合适的 K 值。

相关文章:

机器学习中的数学原理——F值与交叉验证

通过这篇博客,你将清晰的明白什么是F值、交叉验证。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言&#xff0…...

vue.js介绍

个人名片: 😊作者简介:一名大一在校生,web前端开发专业 🤡 个人主页:python学不会123 🐼座右铭:懒惰受到的惩罚不仅仅是自己的失败,还有别人的成功。 🎅**学习…...

【设计模式】1、设计模式七大原则

目录一、单一职责二、接口隔离三、依赖倒置(倒转)四、里氏替换五、迪米特法则(Law of Demeter)六、开闭七、合成复用一、单一职责 类(或方法)功能的专一性。一个类(或方法)不应该承担…...

【前端老赵的CSS简明教程】10-1 CSS预处理器和使用方法

大家好,欢迎来到本期前端课程。我是前端老赵,今天的课程将讲解CSS预处理器的概念和使用方法,希望能够帮助大家更好地进行前端开发。 CSS预处理器是什么? CSS预处理器是一种将类似CSS的语言转换为CSS的工具。它们提供了许多额外的功能,如变量、嵌套、混入、函数等等。这些…...

BFC详解

1. 引言 在前端的布局手段中,一直有这么一个知识点,很多前端开发者都知道有它的存在,但是很多人也仅仅是知道它的存在而已,对它的作用也只是将将说得出来,可是却没办法说得非常的清晰。这个知识点,就是BFC…...

C++:哈希结构(内含unordered_set和unordered_map实现)

unordered系列关联式容器 在C98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到$log_2 N$,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好 的查询是&#xff…...

Java实现调用第三方相关接口(附详细思路)

目录1.0.简单版2.0.升级版2-1.call.timeout()怎么传入新的超时值2-2.timeout(10, TimeUnit.SECONDS)两个参数的意思,具体含义3.0.进阶版3-1.java.net.SocketTimeoutException: 超时如何解决4.0.终极版1.0.简单版 以下是一个使用 Java 实际请求“第三方”的简单示例代…...

基础数据结构:单链表

今天懒洋洋学习了关于基础数据结构有关单链表的相关操作,懒洋洋来这温习一下。一:单链表的定义链表定义:用链式存储的线性表统称为链表,即逻辑结构上连续,物理结构上不连续。链表分类:单链表、双链表、循环链表、静态链…...

基于51单片机的智能计算器Protues仿真设计

目录 一、设计背景 二、实现功能 三、硬件设计 3.1 总体硬件设计 ​3.2 键盘电路的设计 3.3 显示电路的设计 四、仿真演示 五、源程序 一、设计背景 随着社会的发展,科学的进步,人们的生活水平在逐步的提高,尤其是微电子技术的发展&am…...

Pandas数据分析实战练习

Pandas数据分析实战练习 文章目录 Pandas数据分析实战练习一、读取Excel文件中的数据1、读取工号、姓名、时段、交易额这四列数据,使用默认索引,输出前10行数据2、读取第一个worksheet中所有列,跳过第1、3、5行,指定下标为1的列中数据为DataFrame的行索引标签二、筛选符合特…...

C++ 继承下(二篇文章学习继承所有知识点)

5.继承与友元友元关系不能继承&#xff0c;也就是说基类友元不能访问子类私有和保护成员 //验证友元不能继承 class B {friend void Print(); public:B(int b): _b(b){cout << "B()" << endl;}protected:int _b; };class D : public B { public:D(int b,…...

【C++】C++11新特性——类的改进|lambda表达式

文章目录一、类的改进1.1 默认生成1.2 移动构造函数1.3 移动赋值重载函数1.4 成员变量缺省值1.5 强制生成默认函数的关键字default1.6 禁止生成默认函数的关键字delete1.6.1 C98防拷贝1.6.1 C11防拷贝二、lambda表达式2.1 对比2.2 lambda表达式语法2.3 捕捉列表2.4 函数对象与l…...

C语言进阶(37) | 程序环境和预处理

目录 1.程序的翻译环境和执行环境 2.详解编译链接 2.1 翻译环境 2.2 编译本身也分为几个阶段: 2.3 运行环境 3.预处理详解 3.1预定符号 3.2 #define 3.3 #undef 3.4 命令行定义 3.5 条件编译 3.6 文件包含 了解重点&#xff1a; 程序的翻译环境程序的执行环境详解: C语言程…...

Golang每日一练(leetDay0005)

目录 13. 罗马数字转整数 Roman to Integer ★ 14. 最长公共前缀 Longest Common Prefix ★ 15. 三数之和 3Sum ★★★ &#x1f31f; 每日一练刷题专栏 &#x1f31f; Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏 13. 罗马数字转…...

occt_modeling_data(一)——拓扑

下面是我基于opencascade英文文档中关于occt_modeling_data中Topology部分进行的翻译&#xff0c;英文好的还是建议直接看文档&#xff0c;部分我不肯定的地方我会附上英文原句。如发现有错误欢迎评论区留言。 OCCT Topolog允许用户访问和操纵物体的数据&#xff0c;且不需要处…...

【AcWing】蓝桥杯备赛-深度优先搜索-dfs(3)

目录 写在前面&#xff1a; 题目&#xff1a;93. 递归实现组合型枚举 - AcWing题库 读题&#xff1a; 输入格式&#xff1a; 输出格式&#xff1a; 数据范围&#xff1a; 输入样例&#xff1a; 输出样例&#xff1a; 解题思路&#xff1a; 代码&#xff1a; AC &…...

宇宙最强-GPT-4 横空出世:最先进、更安全、更有用

文章目录前言一、准确性提升1.创造力2.视觉输入3.更长的上下文二、相比于ChatGPT有哪些提升1.GPT-4 的高级推理能力超越了 ChatGPT2.GPT-4 在多种测试考试中均优于 ChatGPT。三、研究团队在GPT-4模型都做了哪些改善1.遵循 GPT、GPT-2 和 GPT-3 的研究路径2.我们花了 6 个月的时…...

HashMap的实际开发使用

目 录 前言 一、HashMap是什么&#xff1f; 二、使用步骤 1.解析一下它实现的原理 ​编辑 2.实际开发使用 总结 前言 本章&#xff0c;只是大概记录一下hashMap的简单使用方法&#xff0c;以及理清一下hashMap的put方法的原理&#xff0c;以及get方法的原理。 一、Has…...

OpenCV入门(十三)快速学会OpenCV 12 图像梯度

OpenCV入门&#xff08;十三&#xff09;快速学会OpenCV 12 图像梯度1.Sobel算子1.1 计算x1.2 计算y1.3 计算xy2.Scharr算子2.1 计算x2.2 计算y2.3 计算xy3.Laplacian算子4.总结图像梯度计算的是图像变化的速度。对于图像的边缘部分&#xff0c;其灰度值变化较大&#xff0c;梯…...

软考:常见小题目计算题

01采购合同的类型采购合同主要包括总价类合同、成本补偿类合同、工料合同三大类合同。1、总价类合同此类合同为既定产品、服务或成果的采购设定一个总价。这种合同应在已明确定义需求&#xff0c;且不会出现重大范围变更的情况下使用。包括&#xff1a;&#xff08;1&#xff0…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

鸿蒙Navigation路由导航-基本使用介绍

1. Navigation介绍 Navigation组件是路由导航的根视图容器&#xff0c;一般作为Page页面的根容器使用&#xff0c;其内部默认包含了标题栏、内容区和工具栏&#xff0c;其中内容区默认首页显示导航内容&#xff08;Navigation的子组件&#xff09;或非首页显示&#xff08;Nav…...

MLP实战二:MLP 实现图像数字多分类

任务 实战&#xff08;二&#xff09;&#xff1a;MLP 实现图像多分类 基于 mnist 数据集&#xff0c;建立 mlp 模型&#xff0c;实现 0-9 数字的十分类 task: 1、实现 mnist 数据载入&#xff0c;可视化图形数字&#xff1b; 2、完成数据预处理&#xff1a;图像数据维度转换与…...

若依项目部署--传统架构--未完待续

若依项目介绍 项目源码获取 #Git工具下载 dnf -y install git #若依项目获取 git clone https://gitee.com/y_project/RuoYi-Vue.git项目背景 随着企业信息化需求的增加&#xff0c;传统开发模式存在效率低&#xff0c;重复劳动多等问题。若依项目通过整合主流技术框架&…...