当前位置: 首页 > news >正文

成都网站建设优化/上海网站关键词排名优化报价

成都网站建设优化,上海网站关键词排名优化报价,驾校网站建设和推广,中企动力网站培训系列文章目录 文章目录系列文章目录前言一、堆的定义二、堆的实现三、堆的接口函数1、初始化2、销毁3、插入4、删除5、判空6、元素个数四、堆排序1、建堆2、排序五、堆的应用——TOPK1、什么是TOPK问题?2、解决方法总结前言 堆就是完全二叉树。 一、堆的定义 我们…

系列文章目录


文章目录

  • 系列文章目录
  • 前言
  • 一、堆的定义
  • 二、堆的实现
  • 三、堆的接口函数
    • 1、初始化
    • 2、销毁
    • 3、插入
    • 4、删除
    • 5、判空
    • 6、元素个数
  • 四、堆排序
    • 1、建堆
    • 2、排序
  • 五、堆的应用——TOPK
    • 1、什么是TOPK问题?
    • 2、解决方法
  • 总结


前言

堆就是完全二叉树。


一、堆的定义

我们了解到了树、二叉树等相关的概念,那么今天所讲解的堆就是基于二叉树中的完全二叉树实现的。那么在完全二叉树的基础上,堆还满足该性质:堆中的子节点始终小于等于(大于等于)父节点

倘若,堆的父节点始终小于等于其子节点,我们就称之为小根堆
倘若,堆的父节点始终大于等于其子节点,我们就称之为大根堆

堆的逻辑结构物理结构

在这里插入图片描述
从上述的物理结构我们可以知道,我们接下来的代码实现是基于数组的。因此,我们将采用动态顺序表的思路来存储堆。

二、堆的实现

typedef int HPDataType;typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;

三、堆的接口函数

1、初始化

void HeapInit(HP* php)
{assert(php);php->size = 0;php->capacity = 4;HPDataType* cur = (HPDataType*)malloc(sizeof(HP));assert(cur);php->a = cur;
}

2、销毁

void HeapDestory(HP* php)
{assert(php);php->size = 0;php->capacity = 0;free(php->a);php->a = NULL;
}

3、插入

void HeapPush(HP* php, HPDataType x)
{assert(php);if(php->capacity == php->size){//扩容php->capacity *= 2;HPDataType* cur = (HPDataType*)realloc(php->a, sizeof(HP) * php->capacity);assert(cur);php->a = cur;}php->a[php->size++] = x;AdjustUp(php->a, php->size - 1);}

我们是在最后一个位置插入一个数据,然后再让这个数据向上移动。
在这里插入图片描述
我们发现,100需要向上移动的话,只需要和100的祖宗们相比较。因此,我们可以写出AdjustUp的函数。

void AdjustUp(HPDataType* a, int child)
{//向上调整int parent = (child - 1) / 2;while (child > 0){if (a[parent] < a[child]){swap(&a[parent], &a[child]);child = parent;parent = (child - 1) / 2;}else{break;}}
}

4、删除

void HeapPop(HP* php)
{assert(php);assert(php->size > 0);swap(&php->a[0], &php->a[--php->size]);AdjustDown(php->a, 0, php->size);
}

我们这里需要删除的是堆顶。但数组中删除堆顶元素的时间复杂度是O(N)。这是相当复杂的,而尾删的时间复杂度是O(1),于是我们这里也是先将尾部元素和堆顶元素进行交换,然后再将堆顶元素向下移动。
在这里插入图片描述

void AdjustDown(HPDataType* a, int parent, int size)
{//向下调整int child = parent * 2 + 1;while (child < size){//确认child指向大的哪个孩子if (child + 1 < size && a[child + 1] < a[child]){++child;}if (a[child] < a[parent]){//孩子大于父亲,交换,继续向下调整swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{//孩子小于父亲break;}}
}

5、判空

bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}

6、元素个数

int HeapSize(HP* php)
{assert(php);return php->size;
}

四、堆排序

1、建堆

堆排序的基础是将数组中的元素建成一个堆:
方式1:尾插
我们从第一个元素开始,不断地插入新元素,然后让这个元素向上调整,让其对应到相应的位置。让数组始终保持一个堆,这样才能向上调整。
在这里插入图片描述

void AdjustUp(int*arr,int child)
{int parent=(child-1)>>1;while(child>0){if(arr[child]>arr[parent]){swap(arr[child],arr[parent]);child=parent;parent=(child-1)>>1;}else break;}
}
void Heap_Sort(int*arr,int size)
{//建堆for(int i=0;i<size;i++){AdjustUp(arr,i);}//.....
}

方式2:根节点向下调整
向下调整一般是针对根节点的,但是向下调整要保证下面紧跟的两个子树是两个堆,否则就会出错。因此,我们可以从倒数第二排开始,不断调整每一个小堆,从小到大,从少到多。
在这里插入图片描述
我们先保证两个子树是堆,然后再去调整这个两个子树的根节点。

void AdjustDown(int*arr,int size,int parent)
{int child=parent*2+1;while(child<size){if(child+1<size&&arr[child+1]>arr[child])child++;if(arr[child]>arr[parent]){swap(arr[child],arr[parent]);parent=child;child=parent*2+1;}else break;}
}
void Heap_Sort(int*arr,int size)
{//搭建一个大根堆for(int i=(size-1-1)/2;i>=0;i--){AdjustDown(arr,size,i);}//.........
}

2、排序

排序的话,假设我们是升序排列,但是我们创建的小根堆,那么每次取出根节点,但是取出之后,我们的堆的结构就混乱了,因此我们就需要重新建堆,此时的时间复杂度是n方。

于是我们换一个思路,我们创建一个大根堆,那么根节点就是最大的,我们让根节点和最后一个元素交换,然后我们删掉最后一个元素,即让尾指针前移,此时我们的最大值存储在了数组中的最后一位,然后我们让根节点向下移动,恢复堆的结构,此时堆顶就是次大值,然后我们再交换,让次大的元素到倒数第二的位置。由此类推,最后就能排好所有元素,其顺序为升序。

我们的根节点向下移动的时间复杂度是O(logN),共N个元素,此时时间复杂度是O(NlogN)。

#include<iostream>
#include<ctime>
using namespace std;
void AdjustDown(int*arr,int size,int parent)
{int child=parent*2+1;while(child<size){if(child+1<size&&arr[child+1]>arr[child])child++;if(arr[child]>arr[parent]){swap(arr[child],arr[parent]);parent=child;child=parent*2+1;}else break;}
}
void Heap_Sort(int*arr,int size)
{for(int i=(size-1-1)/2;i>=0;i--){AdjustDown(arr,size,i);}for(int end=size-1;end>0;end--){swap(arr[0],arr[end]);AdjustDown(arr,end,0);}
}

五、堆的应用——TOPK

1、什么是TOPK问题?

topk问题就是,我们再一堆数字中选出前K个最大的或者最小的数字。

2、解决方法

如果我们的数据量是十个亿,此时我们的内存区是不支持将其造成一个堆的,所以我们利用前k个元素创建一个元素个数为k的小根堆,那么我们堆中的较大元素一定会 “沉底”。此时,我们再去不断地读取元素,然后让这个元素和根节点比较,如果大于根节点,我们就替换掉根节点,然后让替换后的新的根节点下沉,为什么让这二者比较呢?因为我们创建的是小根堆,但是我们想要的是最大值,而根节点是最小的,所以根节点是最有可能被换掉的,所以我们让根节点去比较,最终剩下的这个元素为K的堆,就是答案。

// 在N个数找出最大的前K个  or  在N个数找出最小的前K个
void TopK(int* a, int n, int k)
{HP hp;HeapInit(&hp);// 创建一个K个数的小堆for (int i = 0; i < k; ++i){HeapPush(&hp, a[i]);}// 剩下的N-K个数跟堆顶的数据比较,比他小,就替换他进堆for (int i = k; i < n; ++i){if (a[i] < HeapTop(&hp)){HeapPop(&hp);HeapPush(&hp, a[i]);}}HeapPrint(&hp);HeapDestroy(&hp);
}

总结

堆是一个逻辑上的完全二叉树,物理上是动态顺序表。
在希望与失望的决斗中,如果你用勇气与坚决的双手紧握着,胜利必属于希望。——普里尼

相关文章:

第九章:C语言数据结构与算法初阶之堆

系列文章目录 文章目录系列文章目录前言一、堆的定义二、堆的实现三、堆的接口函数1、初始化2、销毁3、插入4、删除5、判空6、元素个数四、堆排序1、建堆2、排序五、堆的应用——TOPK1、什么是TOPK问题&#xff1f;2、解决方法总结前言 堆就是完全二叉树。 一、堆的定义 我们…...

Mysql架构初识

&#x1f972; &#x1f978; &#x1f90c; &#x1fac0; &#x1fac1; &#x1f977; &#x1f43b;‍❄️&#x1f9a4; &#x1fab6; &#x1f9ad; &#x1fab2; &#x1fab3; &#x1fab0; &#x1fab1; &#x1fab4; &#x1fad0; &#x1fad2; &#x1fad1;…...

字符串函数和内存函数

&#x1f355;博客主页&#xff1a;️自信不孤单 &#x1f36c;文章专栏&#xff1a;C语言 &#x1f35a;代码仓库&#xff1a;破浪晓梦 &#x1f36d;欢迎关注&#xff1a;欢迎大家点赞收藏关注 字符串函数和内存函数 文章目录字符串函数和内存函数前言1. 字符串函数介绍1.1 s…...

Web3中文|GPT-4超越GPT-3.5的五大看点

A Beautiful CinderellaDwelling EagerlyFinally Gains HappinessInspiring Jealous KinLove Magically Nurtures Opulent PrinceQuietly RescuesSlipper TriumphsUniting Very WondrouslyXenial Youth Zealously这是一段描述童话故事《灰姑娘》的内容&#xff0c;它出自GPT-4之…...

动态矢量瓦片缓存库方案

目录 前言 二、实现步骤 1.将数据写入postgis数据库 2.将矢量瓦片数据写入缓存库 3.瓦片接口实现 4.瓦片局部更新接口实现 总结 前言 矢量瓦片作为webgis目前最优秀的数据格式&#xff0c;其主要特点就是解决了大批量数据在前端渲染时出现加载缓慢、卡顿的问题&#xff0…...

628.三个数的最大乘积

给你一个整型数组 nums &#xff0c;在数组中找出由三个数组成的最大乘积&#xff0c;并输出这个乘积。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3] 输出&#xff1a;6 示例 2&#xff1a; 输入&#xff1a;nums [1,2,3,4] 输出&#xff1a;24 示例 3&#xff1a; …...

【数据结构】堆和集合笔记

自己写一个堆首先&#xff0c;明确一下&#xff0c;为什么需要堆&#xff1f;>考虑插入&#xff0c;删除&#xff0c;查找的效率。数组&#xff0c;查找&#xff0c;最快是二分查找O(lgN)。但查找完如果要做什么操作&#xff0c;比如删除&#xff0c;就要挪动元素了。所以合…...

java LinkedList 源码分析(通俗易懂)

目录 一、前言 二、LinkedList类简介 三、LinkedList类的底层实现 四、LinkedList类的源码解读 1.add方法解读 : 〇准备工作 。 ①跳入无参构造。 ②跳入add方法。 ③跳入linkList方法。 ④增加第一个元素成功。 ⑤向链表中添加第二个元素。 2.remove方法解读 : 〇准备工…...

Vue中实现路由跳转的三种方式详细分解

vue中实现路由跳转的三种方式 目录 vue中实现路由跳转的三种方式 一、使用vue-router 1.下载vue-router模块到当前工程 2.在main.js中引入VueRouter函数 3.添加到Vue.use()身上 – 注册全局RouterLink和RouterView组件 4.创建路由规则数组 – 路径和组件名对应关系 5…...

全国自学考试03708《中国近现代史纲要》重点复习精要

1. 西方列强的殖民扩张和鸦片战争的影响。&#xff08;两面性&#xff09; &#xff1a;反面—破坏了了中国的小农经济&#xff0c;是中国由封建社会转变为两半社会。 --一系列不公平条约&#xff0c;破坏了中国主权领土完整。 --压迫中国人民&#xff0c;给中国人民带来了巨大…...

数据库面试题——锁

了解数据库的锁吗&#xff1f; 锁是数据库系统区别于文件系统的一个关键特性&#xff0c;锁机制用于管理对共享资源的并发访问。 InnoDB下两种标准行级锁&#xff1a; 共享锁&#xff08;S Lock&#xff09;&#xff0c;允许事务读一行数据。 排他锁&#xff08;X Lock&…...

Python笔记 -- 文件和异常

文章目录1、文件1.1、with关键字1.2、逐行读取1.3、写入模式1.4、多行写入2、异常2.1、try-except-else2.2、pass1、文件 1.1、with关键字 with关键字用于自动管理资源 使用with可以让python在合适的时候释放资源 python会将文本解读为字符串 # -*- encoding:utf-8 -*- # 如…...

蓝桥杯刷题冲刺 | 倒计时24天

作者&#xff1a;指针不指南吗 专栏&#xff1a;蓝桥杯倒计时冲刺 &#x1f43e;马上就要蓝桥杯了&#xff0c;最后的这几天尤为重要&#xff0c;不可懈怠哦&#x1f43e; 文章目录1.修剪灌木2.统计子矩阵1.修剪灌木 题目 链接&#xff1a; 修剪灌木 - 蓝桥云课 (lanqiao.cn) 找…...

真正理解微软Windows程序运行机制——什么是消息

我是荔园微风&#xff0c;作为一名在IT界整整25年的老兵&#xff0c;今天说说Windows程序的运行机制。经常被问到MFC到底是一个什么技术&#xff0c;为了解释这个我之前还写过帖子&#xff0c;但是很多人还是不理解。其实这没什么&#xff0c;我在学生时代也被这个问题困绕过。…...

HTTP 缓存的工作原理

缓存是解决http1.1当中的性能问题主要手段。缓存可能存在于客户端浏览器上&#xff0c;也可以存在服务器上面&#xff0c;当使用过期缓存可能给用户展示的是错误的信息而导致一些bug。 HTTP 缓存&#xff1a;为当前请求复用前请求的响应 • 目标&#xff1a;减少时延&#xff1…...

RK3568在Android上进行驱动模块开发(源码外)

文章目录 前言一、ARCH架构二、编译器三、建立自己的Makefile文件总结前言 本文记录在驱动开发时,由于编译内核时间较长,经常会选择单独编译一个模块,这里主要讲解,makefile文件如何编写(主要是编译器和架构) 提示:以下是本篇文章正文内容,下面案例可供参考 一、ARCH…...

操作技巧 | 在Revit中借用CAD填充图案的方法

在建模过程中&#xff0c;有时需要达到多种填充效果&#xff0c;而CAD中大量的二维填充图案&#xff0c;便是最直接的资源之一。 使用 填充图案之前 使用 填充图案之后 其中要用到主要命令便是对表面填充图案的添加与编辑 简单效果 如下 模型填充与绘图填充 区别 模型填…...

Java的二叉树、红黑树、B+树

数组和链表是常用的数据结构&#xff0c;数组虽然查找快&#xff08;有序数组可以通过二分法查找&#xff09;&#xff0c;但是插入和删除是比较慢的&#xff1b;而链表&#xff0c;插入和删除很快&#xff08;只需要改变一些引用值&#xff09;&#xff0c;但是查找就很慢&…...

昨天某读者拿到华为OD岗位offer,今天来分享一下经验,包含华为OD机试

来自读者投稿&#xff0c;已经拿到华为 OD 开发岗位 offer&#xff0c;询问了一些问题&#xff0c;下面是他的一些经验。 文章目录华为 OD 投递简历华为 OD 机试分数OD 机试通过之后&#xff0c;收到综合测评OD 技术面&#xff08;时长 1 小时左右&#xff09;主管/HR 面试&…...

树的遍历方式(前中后,层序遍历,递归,迭代,Morris遍历)-----直接查询代码

目录 一.前序遍历 1.递归 2.栈迭代 3.Morris遍历 二.中序遍历 1.递归 2.栈迭代 3.Morris遍历 三.后序遍历 1.递归 2.栈迭代 3.Morris遍历 四.前中后序的统一迭代法 1.前序遍历 2.中序遍历 3.后序遍历 五.层序遍历 1.队列迭代 2.之字形层序遍历 3.锯齿形层序…...

Docker Registry部署镜像私有仓库及鉴权认证

文章目录一、Docker Registry是什么&#xff1f;二、Docker Registry部署私有仓库2.1、Docker Registry安装2.2、Docker Registry配置2.3、启动Docker Registry2.4、Docker客户端配置2.5、向Docker Registry上传和下载镜像三、Docker Registry鉴权和认证3.1、基本认证3.2、Bear…...

stm32外设-中断详解

0. 写在最前 本栏目笔记都是基于stm32F10x 1. 中断是啥&#xff1f; 什么是中断&#xff1a;CPU在处理某一事件A时&#xff0c;发生的另外某一事件B请求CPU去处理&#xff08;产生了中断&#xff09;&#xff0c;随后CPU暂时中断当前正在执行的任务&#xff0c;去对事件B进行处…...

第十四届蓝桥杯三月真题刷题训练——第 13 天

目录 第 1 题&#xff1a;特殊日期 问题描述 答案提交 运行限制 代码&#xff1a; 思路&#xff1a; 第 2 题&#xff1a;重合次数 问题描述 答案提交 运行限制 代码&#xff1a; 第 3 题&#xff1a;左移右移 问题描述 输入格式 输出格式 样例输入 样例输出…...

webgl_gpgpu_birds 样例分析

webgl_gpgpu_birds 是一个 three.js 的官方样例&#xff0c;这个例子模拟了鸟群的运动&#xff0c;是一个群组动画&#xff0c;并且动画的帧率也很高&#xff1b;鸟群的运动很自然&#xff0c;非常值得研究。类似的群组动画还有鱼群&#xff0c;boid是‘类鸟群’的英文 大概两…...

以业务行为驱动的反入侵安全能力建设

0x0 背景 最近听到一些甲方安全领域的专家分享了部分安全建设的经验&#xff0c;对安全运营下的反入侵技术能力建设有了些新的看法&#xff0c;依靠单个/多个异构的安全产品的关联能力形成的安全中台并不能在实际的攻防对抗当中占据主动地位&#xff0c;且很容易达到一个天花板…...

Unity3d C#使用DOTween插件的Sequence实现系列动画OnComplete无效和颜色设置无效的问题记录

前言 最近在弄一个文字动画效果的动画&#xff0c;使用了DOTween插件的Sequence来实现&#xff0c;主要就是对一个Text进行的文字打字、缩放和颜色设置等动画&#xff0c;功能是先对Text实现打字的动画&#xff0c;打字完成后&#xff0c;延时几秒对文字进行缩小、颜色变淡&am…...

【蓝桥杯-筑基篇】排序算法

&#x1f353;系列专栏:蓝桥杯 &#x1f349;个人主页:个人主页 目录 前言&#xff1a; 一、冒泡排序 二、选择排序 三、插入排序 四、图书推荐 前言&#xff1a; 算法工具推荐&#xff1a; 还在为数据结构发愁吗&#xff1f;这款可视化工具&#xff0c;帮助你更好的了解…...

编辑器进化 VSCode + Vim

本文作者为 360 奇舞团前端工程师VSCode 是一款非常流行的代码编辑器。它支持多种编程语言&#xff0c;拥有丰富的插件和调试功能&#xff0c;不论是处理前端工程还是后端工程&#xff0c;VSCode 都能提供给开发者优秀的用户体验。鉴于 VSCode 超高的流行度&#xff0c;我会默认…...

LearnOpenGL-高级OpenGL-6.天空盒

本人刚学OpenGL不久且自学&#xff0c;文中定有代码、术语等错误&#xff0c;欢迎指正 我写的项目地址&#xff1a;https://github.com/liujianjie/LearnOpenGLProject 文章目录天空盒介绍如何采样OpenGL纹理目标例子0&#xff1a;天空盒效果环境映射反射例子1&#xff1a;Cube…...

Printk打印内核日志

一、背景 Linux 内核中提供了内核日志打印的工具printk。它的使用方式C语言中的printf是类似的。接下来我们介绍一下printk的使用方式。本文以打印Binder中的日志为例&#xff0c;进行演示。 printk的方法声明和日志级别binder驱动中增加 打印代码android系统中查看日志信息 …...