当前位置: 首页 > news >正文

JAVA 异步编程(线程安全)二

1、线程安全

        线程安全是指你的代码所在的进程中有多个线程同时运行,而这些线程可能会同时运行这段代码,如果每次运行的代码结果和单线程运行的结果是一样的,且其他变量的值和预期的也是一样的,那么就是线程安全的。

        一个类或者程序所提供的接口对于线程来说是原子操作或者多个线程之间的切换不会导致该接口的执行结果存在二义性,也就是说我们不用考虑同步的问题。
        线程安全问题都是由全局变量及静态变量引起的。若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行
写操作,一般都需要考虑线程同步,否则就可能影响线程安全。

Java中Vector,HashTable,StringBuffer和java.util.concurrent下的集合类都是线程安全的

2、非线程安全

        是不提供代码数据访问保护,可能出现多个线程先后访问更改数据造成所得的数据是脏数据。*(脏数据是表示一个数据已经被修改,但是还没有保存或进一步的处理。
        例如你操作数据库修改某一字段内容,在你修改了但还没commit时,另一线程在读取这
数据,他读取的就是你修改前的数据,但事实上你已经修改了,这就是脏数据了。)*在多个线程同时访问同一个对象时会发生数据错误 不完整等情况时 那就是线程不安全。

这里展示一段代码,全局变量count就是线程不安全,这个count变量可能同时被三个线程进行写操作。

Java中HashMap,ArrayList,StringBuilder都是线程不安全的。

    private static Integer count = new Integer(100);public void noSafeMethod() {while (count > 0) {Util.mySleep(100);count--;}Util.printfLog("count=" + count + ";threadid=" + Thread.currentThread().getName());}/*** 线程不安全,三个线程同时修改,会导致count多减*/private static void threadNoSafe() {ExecutorService executorService = Executors.newFixedThreadPool(10);ThreadSafeTest threadSafeTest = new ThreadSafeTest();executorService.submit(threadSafeTest::noSafeMethod);executorService.submit(threadSafeTest::noSafeMethod);executorService.submit(threadSafeTest::noSafeMethod);executorService.shutdown();}

3、线程安全出现的根本原因

  • 存在两个或者两个以上的线程对象共享同一个资源;
  • 多线程操作共享资源代码有多个语句。
  • 存在竞争的线程不安全,不存在竞争的线程就是安全的

4、实现线程安全

        实现线程安全常用的方式有悲观锁(互斥同步锁),乐观锁(非阻塞同步锁例如基于CAS机制),无同步方案等方式

 4.1 悲观锁(互斥同步锁)。

     悲观锁也叫互斥同步锁,是一种阻塞机制,当前线程通过对当前资源的独占,进而实现线程安全。

        悲观锁总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程)。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中synchronized和ReentrantLock等独占锁就是悲观锁思想的实现。

1. synchronized

    private static Integer count2 = 100;private static Object object = new Object();public void synchronizedMethod() {while (count2 > 0) {synchronized (object) {Util.mySleep(Double.valueOf(Math.random() * 10).intValue());if (count2 > 0) {count2--;}}}Util.printfLog("synchronized:count2=" + count2 + ";threadname=" + Thread.currentThread().getName());}private static void threadSynchronized() {ExecutorService executorService = Executors.newFixedThreadPool(10);ThreadSafeTest threadSafeTest = new ThreadSafeTest();executorService.submit(threadSafeTest::synchronizedMethod);executorService.submit(threadSafeTest::synchronizedMethod);executorService.submit(threadSafeTest::synchronizedMethod);executorService.shutdown();}

当某一个线程同对count资源的独占,进而实现 线程安全,不会像不安全代码一样出现负值。

        2. ReentrantLock

    private static Integer countLock = new Integer(100);ReentrantLock reentrantLock = new ReentrantLock();public void reentrantLockMethod() {while (countLock > 0) {reentrantLock.lock();
//            reentrantLock.tryLock(3, TimeUnit.SECONDS);Util.mySleep(100);//当解锁之后线程可能获取到的还是旧值(countLock已经被其他的线程加成0了),// 所以还需要再次判断,不然会被线程多减一次成为-1if (countLock > 0) {countLock--;}reentrantLock.unlock();}Util.printfLog("countLock=" + countLock + ";threadname=" + Thread.currentThread().getName());}private static void threadReentrantLock() {ExecutorService executorService = Executors.newFixedThreadPool(10);ThreadSafeTest threadSafeTest = new ThreadSafeTest();executorService.submit(threadSafeTest::reentrantLockMethod);executorService.submit(threadSafeTest::reentrantLockMethod);executorService.submit(threadSafeTest::reentrantLockMethod);executorService.shutdown();}

3. 

3. Lock和synchronized对比 

1)synchronized是Java语言的关键字,因此是内置特性,Lock不是Java语言内置的,Lock是一个接口,通过实现类可以实现同步访问。

 2)synchronized是在JVM层面上实现的,不但可以通过一些监控工具监控synchronized的锁定,而且在代码执行时出现异常,JVM会自动释放锁定,但是使用Lock则不行,lock是通过代码实现的,要保证锁定一定会被释放,就必须将unLock()放到finally{}中

 3)在资源竞争不是很激烈的情况下,Synchronized的性能要优于ReetrantLock,但是在资源竞争很激烈的情况下,Synchronized的性能会下降几十倍,但是ReetrantLock的性能能维持常态。

 4)Lock 实现提供了比 synchronized 关键字 更广泛的锁操作,它能以更优雅的方式处理线程同步问题。

4.2 乐观锁(非阻塞同步锁)

        乐观锁是一种非阻塞锁。乐观锁总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。  

        乐观锁一般会使用版本号机制(在更新或者删除时where增加时间字段等条件)或CAS算法实现。  

1.原子类(CAS)    

JUC中提供了几个Automic类以及每个类上的原子操作就是乐观锁机制。AtomicBoolean, AtomicInteger,AtomicLong,AtomicLongArray,AtomicReference等原子类的类,主要用于在高并发环境下的高效程序处理,来帮助我们简化同步处理.

    private static AtomicInteger atomicInteger = new AtomicInteger(100);public void atomicIntegerMethod() {while (atomicInteger.get() > 0) {Util.mySleep(100);int oldValue = atomicInteger.get();if (oldValue <= 0) {break;}int newValue = oldValue - 1;if (!atomicInteger.compareAndSet(oldValue, newValue)) {
//                System.out.println("threadName=" + Thread.currentThread().getName() + ";oldValue=" + oldValue + ";oldvaluelatest=" + atomicInteger.get());}}Util.printfLog("atomicInteger=" + atomicInteger.get() + ";threadname=" + Thread.currentThread().getName());}/****/private static void threadAtomicInteger() {ExecutorService executorService = Executors.newFixedThreadPool(10);ThreadSafeTest threadSafeTest = new ThreadSafeTest();executorService.submit(threadSafeTest::atomicIntegerMethod);executorService.submit(threadSafeTest::atomicIntegerMethod);executorService.submit(threadSafeTest::atomicIntegerMethod);executorService.shutdown();}

 乐观锁和悲观锁的使用场景

        从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。

4.4 无同步方案

1.可重入代码

        在执行的任何时刻都可以中断-重入执行而不会产生冲突。特点就是不会依赖堆上的共享资源

2.ThreadLocal/Volaitile

        线程本地的变量,每个线程获取一份共享变量的拷贝,单独进行处理。SpringBoot中的HttpServletRequest就是使用ThreadLocal实现了每次并发请求,HttpServletRequest是线程安全的。

3.线程本地存储

        如果一个共享资源一定要被多线程共享,可以尽量让一个线程完成所有的处理操作,比如生产者消费者模式中,一般会让一个消费者完成对队列上资源的消费。典型的应用是基于请求-应答模式的web服务器的设计。

5. 死锁的定义

5.1 死锁的定义

 多线程以及多进程改善了系统资源的利用率并提高了系统 的处理能力。然而,并发执行也带来了新的问题——死锁。所谓死锁是指多个线程因竞争资源而造成的一种僵局(互相等待),若无外力作用,这些进程都将无法向前推进。

     死锁是指两个或两个以上的线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。

5.2 死锁产生的原因

1、系统资源的竞争

2、进程推进顺序非法

3、死锁产生的必要条件

(1)互斥条件,(2)不剥夺条件,(3)请求和保持条件,(4)循环等待条件

5.3 如何避免死锁

  • 加锁顺序(线程按照一定的顺序加锁)
  • 加锁时限线程尝试获取锁的时候加上一定的时限,超过时限则放弃对该锁的请求,并释放自己占有的锁)
  • 死锁检测

参考:

Java深入学习11:Lock锁详解

面试必备之乐观锁与悲观锁

Java多线程:死锁

相关文章:

JAVA 异步编程(线程安全)二

1、线程安全 线程安全是指你的代码所在的进程中有多个线程同时运行&#xff0c;而这些线程可能会同时运行这段代码&#xff0c;如果每次运行的代码结果和单线程运行的结果是一样的&#xff0c;且其他变量的值和预期的也是一样的&#xff0c;那么就是线程安全的。 一个类或者程序…...

Golang | Leetcode Golang题解之第260题只出现一次的数字III

题目&#xff1a; 题解&#xff1a; func singleNumber(nums []int) []int {xorSum : 0for _, num : range nums {xorSum ^ num}lsb : xorSum & -xorSumtype1, type2 : 0, 0for _, num : range nums {if num&lsb > 0 {type1 ^ num} else {type2 ^ num}}return []in…...

IDEA自带的Maven 3.9.x无法刷新http nexus私服

问题&#xff1a; 自建的私服&#xff0c;配置了域名&#xff0c;使用http协议&#xff0c;在IDEA中或本地Maven 3.9.x会出现报错&#xff0c;提示http被blocked&#xff0c;原因是Maven 3.8.1开始&#xff0c;Maven默认禁止使用HTTP仓库地址&#xff0c;只允许使用HTTPS仓库地…...

56、本地数据库迁移到阿里云

现有需求&#xff0c;本地数据库迁移到阿里云上。 库名xy102表 test01test02test01 test023条数据。1、登录阿里云界面创建免费试用ECS实列。 阿里云登录页 (aliyun.com)](https://account.aliyun.com/login/login.htm?oauth_callbackhttps%3A%2F%2Fusercenter2.aliyun.com%…...

新时代多目标优化【数学建模】领域的极致探索——数学规划模型

目录 例1 1.问题重述 2.基本模型 变量定义&#xff1a; 目标函数&#xff1a; 约束条件&#xff1a; 3.模型分析与假设 4.模型求解 5.LINGO代码实现 6.结果解释 ​编辑 7.敏感性分析 8.结果解释 例2 奶制品的销售计划 1.问题重述 ​编辑 2.基本模型 3.模…...

单例模式详解

文章目录 一、概述1.单例模式2.单例模式的特点3.单例模式的实现方法 二、单例模式的实现1. 饿汉式2. 懒汉式3. 双重校验锁4. 静态内部类5. 枚举 三、总结 一、概述 1.单例模式 单例模式&#xff08;Singleton Pattern&#xff09;是一种创建型设计模式&#xff0c;确保一个类…...

WebGIS主流的客户端框架比较|OpenLayers|Leaflet|Cesium

实现 WebGIS 应用的主流前端框架主要包括 OpenLayers、Leaflet、Mapbox GL JS 和 Cesium 等。每个框架都有其独特的功能和优势&#xff0c;适合不同的应用场景。 WebGIS主流前端框架的优缺点 前 端 框架优点缺点OpenLayers较重量级的开源库&#xff0c;二维GIS功能最丰富全面…...

【LabVIEW作业篇 - 2】:分数判断、按钮控制while循环暂停、单击按钮获取book文本

文章目录 分数判断按钮控制while循环暂停按钮控制单个while循环暂停 按钮控制多个while循环暂停单击按钮获取book文本 分数判断 限定整型数值输入控件值得输入范围&#xff0c;范围在0-100之间&#xff0c;判断整型数值输入控件的输入值。 输入范围在0-59之间&#xff0c;显示…...

Kafka架构详解之分区Partition

目录 一、简介二、架构三、分区Partition1.分区概念2.Offsets&#xff08;偏移量&#xff09;和消息的顺序3.分区如何为Kafka提供扩展能力4.producer写入策略5.consumer消费机制 一、简介 Apache Kafka 是分布式发布 - 订阅消息系统&#xff0c;在 kafka 官网上对 kafka 的定义…...

SSM之Mybatis

SSM之Mybatis 一、MyBatis简介1、MyBatis特性2、MyBatis的下载3、MyBatis和其他持久化层技术对比 二、MyBatis框架搭建三、MyBatis基础功能1、MyBatis核心配置文件2、MyBatis映射文件3、MyBatis实现增删改查4、MyBatis获取参数值的两种方式5、MyBatis查询功能6、MyBatis自定义映…...

Python list comprehension (列表推导式 - 列表解析式 - 列表生成式)

Python list comprehension {列表推导式 - 列表解析式 - 列表生成式} 1. Python list comprehension (列表推导式 - 列表解析式 - 列表生成式)2. Example3. ExampleReferences Python 中的列表解析式并不是用来解决全新的问题&#xff0c;只是为解决已有问题提供新的语法。 列…...

2024年7月12日理发记录

上周五天气还算好&#xff0c;不太热&#xff0c;晚上下班打车回家后&#xff0c;将目的地设置成日常去的那个理发店。 下车走到门口&#xff0c;熟悉的托尼帅哥正在抽烟&#xff0c;他一眼看到了我&#xff0c;马上掐灭烟头&#xff0c;从怀里拿出口香糖&#xff0c;咀嚼起来&…...

几种常用排序算法

1 基本概念 排序是处理数据的一种最常见的操作&#xff0c;所谓排序就是将数据按某字段规律排列&#xff0c;所谓的字段就是数据节点的其中一个属性。比如一个班级的学生&#xff0c;其字段就有学号、姓名、班级、分数等等&#xff0c;我们既可以针对学号排序&#xff0c;也可…...

Spring3(代理模式 Spring1案例补充 Aop 面试题)

一、代理模式 在代理模式&#xff08;Proxy Pattern&#xff09;中&#xff0c;一个类代表另一个类的功能&#xff0c;这种类型的设计模式属于结构型模式。 代理模式通过引入一个代理对象来控制对原对象的访问。代理对象在客户端和目标对象之间充当中介&#xff0c;负责将客户端…...

Github报错:Kex_exchange_identification: Connection closed by remote host

文章目录 1. 背景介绍2. 排查和解决方案 1. 背景介绍 Github提交或者拉取代码时&#xff0c;报错如下&#xff1a; Kex_exchange_identification: Connection closed by remote host fatal: Could not read from remote repository.Please make sure you have the correct ac…...

LabVIEW在CRIO中串口通讯数据异常问题

排查与解决步骤 检查硬件连接&#xff1a; 确保CRIO的串口模块正确连接&#xff0c;并且电缆无损坏。 确认串口模块在CRIO中被正确识别和配置。 验证串口配置&#xff1a; 在LabVIEW项目中&#xff0c;检查CRIO目标下的串口配置&#xff0c;确保波特率、数据位、停止位和校验…...

ALTERA芯片解密FPGA、CPLD、PLD芯片解密解密

‌Altera是世界一流的FPGA、CPLD和ASIC半导体生产商&#xff0c;所提供的解决方案与传统DSP、ASSP和ASIC解决方案相比&#xff0c;缩短了产品面市时间&#xff0c;提高了性能和效能&#xff0c;降低了系统成本。针对Altera芯片解密&#xff0c;益臻芯片解密中心经过多年的芯片解…...

[RK3588-Android12] 关于如何取消usb-typec的pd充电功能

问题描述 RK3588取消usb-typec的pd充电功能 解决方案&#xff1a; 在dts中fusb302节点下usb_con: connector子节点下添加如下熟悉&#xff1a; 打上如下2个补丁 diff --git a/drivers/usb/typec/tcpm/tcpm.c b/drivers/usb/typec/tcpm/tcpm.c index c8a4e57c9f9b..173f8cb7…...

分布式 I/O 系统 BL200 Modbus TCP 耦合器

BL200 耦合器是一个数据采集和控制系统&#xff0c;基于强大的 32 位微处理器设计&#xff0c;采用 Linux 操作系统&#xff0c;支持 Modbus 协议&#xff0c;可以快速接入现场 PLC、SCADA 以及 ERP 系统&#xff0c; 内置逻辑控制、边缘计算应用&#xff0c;适用于 IIoT 和工业…...

Java面试题--JVM大厂篇之Serial GC在JVM中有哪些优点和局限性

目录 引言: 正文&#xff1a; 一、Serial GC概述 二、Serial GC的优点 三、Serial GC的局限性 结束语: 引言: 在Java虚拟机&#xff08;JVM&#xff09;中&#xff0c;垃圾收集器&#xff08;Garbage Collector, GC&#xff09;是关键组件之一&#xff0c;负责自动管理内…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

Python环境安装与虚拟环境配置详解

本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南&#xff0c;适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者&#xff0c;都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...

论文笔记:Large Language Models for Next Point-of-Interest Recommendation

SIGIR 2024 1 intro 传统的基于数值的POI推荐方法在处理上下文信息时存在两个主要限制 需要将异构的LBSN数据转换为数字&#xff0c;这可能导致上下文信息的固有含义丢失仅依赖于统计和人为设计来理解上下文信息&#xff0c;缺乏对上下文信息提供的语义概念的理解 ——>使用…...

RabbitMQ work模型

Work 模型是 RabbitMQ 最基础的消息处理模式&#xff0c;核心思想是 ​​多个消费者竞争消费同一个队列中的消息​​&#xff0c;适用于任务分发和负载均衡场景。同一个消息只会被一个消费者处理。 当一个消息队列绑定了多个消费者&#xff0c;每个消息消费的个数都是平摊的&a…...