概率论原理精解【1】
文章目录
- 测度
- 概述
- 集类
- 笛卡尔积
- 定义
- 例子
- 多集合的笛卡尔积
- 定义
- 计算方法
- 注意事项
- 有限笛卡尔积的性质
- 1. 定义
- 2. 性质
- 2.1 基数性质
- 2.2 空集性质
- 2.3 不满足交换律
- 2.4 不满足结合律
- 2.5 对并和交运算满足分配律
- 3. 示例
- 4. 结论
- 参考链接
测度
概述
- 所谓测度,通俗的讲就是测量几何区域的尺度。 我们知道直线上的闭区间的测度就是通常的线段长度; 平面上一个闭圆盘的测度就是它的面积。
- 一般的集合,我们能不能定义测度呢? 比如直线上所有有理数构成的集合,它的测度怎么衡量呢?
一个简单的办法, 就是先在每个有理点上找一个开区间覆盖它,就好比给它带个“帽子”。因为有理数集是可列集(就是可以像排自然一样排好队,一个个数出来,也叫可数集,见集合论)
所以我们可以让第n个有理数上盖的开区间长度是第一个有理数(比方是1)上盖的开区间长度的 2 n 2^n 2n分之一。 这样所有那些开区间的长度之和是个有限值(就是1上的开区间长度的2倍)。
我们让1上的开区间逐渐缩小趋向于一个点,那么所有区间的总长度也相应缩小,趋向于长度0。 这样我们就说有理数集的测度是0。 用上面这种方法定义的测度也叫外测度。
集类
- 是一个集合,但集合的元素也是集合。
- 设有非空集合G,G的子集构成了集类的元素。
- 指标集是用来给集类中的元素标注。
比如 G i : I ∈ I {G_i:I \in I} Gi:I∈I
I I I为指标集
⋂ i ∈ I G i = { g : g ∈ G i , ∀ i ∈ I } ⋃ i ∈ I G i = { g : g ∈ G i , ∀ i ∈ I } \bigcap\limits_{i \in I} G_i=\{g:g \in G_i,\forall i \in I\} \\\bigcup\limits_{i \in I} G_i=\{g:g \in G_i,\forall i \in I\} i∈I⋂Gi={g:g∈Gi,∀i∈I}i∈I⋃Gi={g:g∈Gi,∀i∈I} - 极限
给定一个集合序列 A n {A_n} An,它的上极限可以定义为在无穷多个 A n A_n An中都存在的元素的集合,而下极限则是只有有限个 A n A_n An不包含它的元素的集合。
集合列 A K 上极限集: lim k → ∞ ‾ A k = ⋂ j = 1 ∞ ⋃ k = j ∞ A k 下极限集 : lim k → ∞ ‾ = ⋃ j = 1 ∞ ⋂ k = j ∞ A k 集合列{A_K} \\上极限集:\overline{\lim\limits_{k\rightarrow\infty}}A_k=\displaystyle\bigcap_{j=1}^{\infty}\displaystyle\bigcup_{k=j}^{\infty}A_k \\下极限集: \lim_{\overline{k\rightarrow\infty}}=\displaystyle\bigcup_{j=1}^{\infty}\displaystyle\bigcap_{k=j}^{\infty}A_k 集合列AK上极限集:k→∞limAk=j=1⋂∞k=j⋃∞Ak下极限集:k→∞lim=j=1⋃∞k=j⋂∞Ak
设 { A n , n ≥ 1 } 是单调集列,则 { A n , n ≥ 1 收敛 } A n ↑ = > lim n → ∞ A n = ∪ n = 1 ∞ A n A n ↓ = > lim n → ∞ A n = ∩ n = 1 ∞ A n 设\{A_n,n \ge 1\}是单调集列,则\{A_n,n \ge 1收敛\} \\A_n\uparrow=>\lim_{n \rightarrow \infty}A_n=\cup_{n=1}^{\infty}A_n \\A_n\downarrow=>\lim_{n \rightarrow \infty}A_n=\cap_{n=1}^{\infty}A_n 设{An,n≥1}是单调集列,则{An,n≥1收敛}An↑=>n→∞limAn=∪n=1∞AnAn↓=>n→∞limAn=∩n=1∞An - 值空间
A ⊂ X , A 在 f 下的像为 f ( A ) ,即: f ( A ) = { f ( x ) : x ∈ A } f ( A ) ⊂ Y Y 为值空间 A \subset X,A在f下的像为f(A),即: \\f(A)=\{f(x):x \in A\} \\f(A) \subset Y \\Y为值空间 A⊂X,A在f下的像为f(A),即:f(A)={f(x):x∈A}f(A)⊂YY为值空间
笛卡尔积
下面是文心一言的生成内容
笛卡尔积(Cartesian product)是数学中的一个概念,尤其在集合论、关系代数和计算机科学中非常重要。它指的是两个或多个集合中所有可能的有序元素对的集合。如果集合A有m个元素,集合B有n个元素,那么A和B的笛卡尔积将包含m * n个元素,即A中每一个元素都与B中每一个元素配对一次。
定义
设A和B是两个集合,A和B的笛卡尔积记作A × B,是一个集合,其元素是形如(a, b)的有序对,其中a属于A,b属于B。
例子
假设有两个集合:
- A = {1, 2}
- B = {x, y}
那么A和B的笛卡尔积A × B将是:
A × B = {(1, x), (1, y), (2, x), (2, y)}
这个集合包含了A中每个元素与B中每个元素的所有可能组合。
多集合的笛卡尔积
多集合的笛卡尔积(Cartesian product)是数学中的一个重要概念,它描述了多个集合之间所有可能的组合方式。笛卡尔积的结果是一个新的集合,其中的每个元素都是原集合中元素的组合。以下是关于多集合笛卡尔积的详细解释:
定义
对于给定的n个集合A1, A2, …, An,它们的笛卡尔积是一个新的集合,记作A1×A2×…×An,其中每个元素都是一个n元组(a1, a2, …, an),其中ai属于Ai(i=1, 2, …, n)。这个n元组表示从每个集合Ai中选取一个元素ai所形成的组合。
计算方法
-
两个集合的笛卡尔积:
- 假设有两个集合A和B,A有m个元素,B有n个元素。那么A和B的笛卡尔积A×B将有m×n个元素,每个元素都是一个有序对(a, b),其中a属于A,b属于B。
- 例如,A={1, 2},B={3, 4},则A×B={(1, 3), (1, 4), (2, 3), (2, 4)}。
-
多个集合的笛卡尔积:
- 可以通过迭代计算两个集合的笛卡尔积来得到多个集合的笛卡尔积。
- 首先计算前两个集合的笛卡尔积,然后将结果与下一个集合进行笛卡尔积计算,依此类推,直到与最后一个集合计算完成。
- 例如,对于集合A={a, b},B={0, 1},C={x, y},则首先计算A×B={(a, 0), (a, 1), (b, 0), (b, 1)},然后将结果与C进行笛卡尔积计算,得到A×B×C={(a, 0, x), (a, 0, y), (a, 1, x), (a, 1, y), (b, 0, x), (b, 0, y), (b, 1, x), (b, 1, y)}。
注意事项
- 笛卡尔积的大小随着集合数量的增加而呈指数级增长,因此在实际应用中需要注意性能和内存使用。
- 当处理大量数据时,可能需要考虑使用更高效的算法或优化策略来减少计算时间和内存消耗。
有限笛卡尔积的性质
有限笛卡尔积,即两个或多个有限集合之间的笛卡尔积,具有一系列重要的性质。以下是这些性质的详细归纳:
1. 定义
设A, B为集合,A和B的笛卡尔积是一个集合,其中每个元素都是一个有序对(x, y),其中x来自A,y来自B。记作A×B = {(x, y) | x∈A ∧ y∈B}。
2. 性质
2.1 基数性质
- 如果|A|=m(A的元素个数为m),|B|=n(B的元素个数为n),则|A×B|=mn。即笛卡尔积的元素个数是两个集合元素个数的乘积。
2.2 空集性质
- 当A或B为空集时,A×B也为空集,即A×B=∅。
2.3 不满足交换律
- 笛卡尔积运算不满足交换律,即当A≠B且A, B均非空时,A×B≠B×A。例如,设A={a,b},B={0,1},则A×B和B×A的元素顺序不同。
2.4 不满足结合律
- 笛卡尔积运算不满足结合律,即当A, B, C均非空时,(A×B)×C≠A×(B×C)。因为(A×B)×C的元素是形如((a,b),c)的有序对,而A×(B×C)的元素是形如(a,(b,c))的有序对,它们的结构不同。
2.5 对并和交运算满足分配律
- 笛卡尔积对并和交运算满足分配律,即:
- A×(B∪C)=(A×B)∪(A×C)
- (B∪C)×A=(B×A)∪(C×A)
- A×(B∩C)=(A×B)∩(A×C)
- (B∩C)×A=(B×A)∩(C×A)
这些性质表明,笛卡尔积在集合运算中具有很好的分配性。
3. 示例
设A={a,b},B={0,1},则:
- A×B={<a,0>,<a,1>,<b,0>,<b,1>}
- B×A={<0,a>,<0,b>,<1,a>,<1,b>}
这个示例直观地展示了笛卡尔积的构成以及不满足交换律的性质。
4. 结论
有限笛卡尔积是集合论中的一个重要概念,它具有独特的性质和广泛的应用。了解这些性质有助于更好地理解和运用笛卡尔积进行集合运算和逻辑推理。
以上信息基于多个权威来源的整合和分析,确保了信息的准确性和可靠性。
参考链接
1.测度论,百度百科
2.集合的极限
3. 《测度论与高等概率论》
相关文章:
概率论原理精解【1】
文章目录 测度概述集类笛卡尔积定义例子 多集合的笛卡尔积定义计算方法注意事项 有限笛卡尔积的性质1. 定义2. 性质2.1 基数性质2.2 空集性质2.3 不满足交换律2.4 不满足结合律2.5 对并和交运算满足分配律 3. 示例4. 结论 参考链接 测度 概述 所谓测度,通俗的讲就…...
数据结构(二叉树-1)
文章目录 一、树 1.1 树的概念与结构 1.2 树的相关术语 1.3 树的表示 二、二叉树 2.1 二叉树的概念与结构 2.2特殊的二叉树 满二叉树 完全二叉树 2.3 二叉树的存储结构 三、实现顺序结构二叉树 3.1 堆的概念与结构 3.2 堆的实现 Heap.h Heap.c 默认初始化堆 堆的销毁 堆的插入 …...
巴黎奥运会倒计时 一个非常不错的倒计时提醒
巴黎奥运会还有几天就要开幕了,大家应该到处都可以看到巴黎奥运会的倒计时,不管是电视上,还是网络里,一搜索奥运会,就会看到。倒计时其实是一个我们在生活中很常用的一个方法,用来做事情的提醒,…...
【Python】使用库 -- 详解
库就是别人已经写好了的代码,可以让我们直接拿来用。 一个编程语言能不能流行起来,一方面取决于语法是否简单方便容易学习,一方面取决于生态是否完备。所谓的 “生态” 指的就是语言是否有足够丰富的库,来应对各种各样的场景。在…...
Web3D:WebGL为什么在渲染性能上输给了WebGPU。
WebGL已经成为了web3D的标配,市面上有N多基于webGL的3D引擎,WebGPU作为挑战者,在渲染性能上确实改过webGL一头,由于起步较晚,想通过这个优势加持,赶上并超越webGL仍需时日。 贝格前端工场为大家分享一下这…...
SpringBoot面试高频总结01
1. 什么是SpringBoot? SpringBoot是一个基于Spring框架的快速开发框架,它采用约定大于配置,自动装配的方式,可以快速地创建独立的,生产级别的,基于Spring的应用程序。 相比于传统的Spring框架,S…...
Linux 工作队列(Workqueue):概念与实现
目录 一、工作队列的概念1.1 什么是工作队列1.2 为什么使用工作队列 二、工作队列的实现2.1 定义和初始化工作队列2.2 工作队列API 三、工作队列的应用3.1 延迟执行任务3.2 处理复杂的中断任务 四、工作队列的类型4.1 普通工作队列4.2 高优先级工作队列 五、总结 在Linux内核中…...
前端页面是如何禁止被查看源码、被下载,被爬取,以及破解方法
文章目录 1.了解禁止查看,爬取原理1.1.JS代码,屏蔽屏蔽键盘和鼠标右键1.2.查看源码时,通过JS控制浏览器窗口变化2.百度文库是如何防止抓包2.1.HTPPS2.2. 动态加载为什么看不到?如何查看动态加载的内容?3.禁止复制,如果解决3.1.禁止复制原理3.2.如何破解1.了解禁止查看,爬…...
51单片机嵌入式开发:14、STC89C52RC 之HX1838红外解码NEC+数码管+串口打印+LED显示
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 STC89C52RC 之HX1838红外解码NEC数码管串口打印LED显示 STC89C52RC 之HX1838红外解码NEC数码管串口打印LED显示1 概述2 硬件电路2.1 遥控器2.2 红外接收器电路2.3 STC89C52单…...
在不同环境中,Java应用程序和MySQL等是如何与Docker进行交互和操作的?
1. 本地开发环境 在本地开发环境中,可以使用Docker Compose来管理和运行Java应用程序容器和MySQL容器。通常,会创建一个docker-compose.yml文件,定义需要的服务及其配置。 以下是一个示例docker-compose.yml文件: version: 3 services:app…...
《DRL》P10-P15-损失函数-优化(梯度下降和误差的反向传播)
文章目录 损失函数交叉熵损失多类别分类任务概述真实标签的独热编码交叉熵损失函数 L p 范式 \mathcal{L}_{p}\text{ 范式} Lp 范式均方误差平均绝对误差 优化梯度下降和误差的反向传播 简介 本文介绍了神经网络中的损失函数及其优化方法。损失函数用于衡量模型预测值与真实值…...
Spring Boot项目的404是如何发生的
问题 在日常开发中,假如我们访问一个Sping容器中并不存在的路径,通常会返回404的报错,具体原因是什么呢? 结论 错误的访问会调用两次DispatcherServlet:第一次调用无法找到对应路径时,会给Response设置一个…...
<数据集>手势识别数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:2400张 标注数量(xml文件个数):2400 标注数量(txt文件个数):2400 标注类别数:5 标注类别名称:[fist, no_gesture, like, ok, palm] 序号类别名称图片数框数1fist597…...
【Vue3】选项式 API
【Vue3】选项式 API 背景简介开发环境开发步骤及源码总结 背景 随着年龄的增长,很多曾经烂熟于心的技术原理已被岁月摩擦得愈发模糊起来,技术出身的人总是很难放下一些执念,遂将这些知识整理成文,以纪念曾经努力学习奋斗的日子。…...
2、如何发行自己的数字代币(truffle智能合约项目实战)
2、如何发行自己的数字代币(truffle智能合约项目实战) 1-Atom IDE插件安装2-truffle tutorialtoken3-tutorialtoken源码框架分析4-安装openzeppelin代币框架(代币发布成功) 1-Atom IDE插件安装 正式介绍基于web的智能合约开发 推…...
百日筑基第二十三天-23种设计模式-创建型总汇
百日筑基第二十三天-23种设计模式-创建型总汇 前言 设计模式可以说是对于七大设计原则的实现。 总体来说设计模式分为三大类: 创建型模式,共五种:单例模式、简单工厂模式、抽象工厂模式、建造者模式、原型模式。结构型模式,共…...
张量的基本使用
目录 1.张量的定义 2.张量的分类 3.张量的创建 3.1 根据已有数据创建张量 3.2 根据形状创建张量 3.3 创建指定类型的张量 1.张量的定义 张量(Tensor)是机器学习的基本构建模块,是以数字方式表示数据的形式。PyTorch就是将数据封装成张量…...
Oracle(14)什么是唯一键(Unique Key)?
唯一键(Unique Key)是数据库表中的一个或多个列,它们的值必须在整个表中唯一,但允许包含NULL值。唯一键的主要目的是确保表中每一行的数据在指定的列(或列组合)中是唯一的,以防止重复数据的出现…...
PostgreSQL的引号、数据类型转换和数据类型
一、单引号和双引号(重要): 1、在mysql没啥区别 2、在pgsql中,实际字符串用单引号,双引号相当于mysql的,用来包含关键字; -- 单引号,表示user_name的字符串实际值 insert into t_user(user_nam…...
Mad MAD Sum-Codeforces Round 960 (Div. 2)
题目在这里 大意: MAD函数返回出现次数 ≥ 2 \geq2 ≥2的最大整数 b i b_i bi M A D ( a [ 1 , 2 , . . . i ] ) MAD(a[1,2,...i]) MAD(a[1,2,...i]) 每次操作把 a i a_i ai进行上述操作,直到全变为0为止,对每次操作的数组进行求和,记…...
Flutter 插件之 package_info_plus
当使用Flutter开发应用时,通常需要获取应用程序的基本信息,例如包名、版本号和构建号。Flutter提供了一个名为 package_info_plus 的插件,它能方便地帮助我们获取这些信息。 1. 添加依赖 首先,需要在项目的 pubspec.yaml 文件中添加 package_info_plus 的依赖。打开 pubs…...
如何实现布隆过滤器?
1.布隆过滤器的场景 在Redis 缓存击穿(失效)、缓存穿透、缓存雪崩怎么解决?中我们说到可以使用布隆过滤器避免「缓存穿透」。 你会说我们只要记录了每个用户看过的历史记录,每次推荐的时候去查询数据库过滤存在的数据实现去重。 …...
运维团队如何高效监控容器化环境中的PID及其他关键指标
随着云计算和容器化技术的快速发展,越来越多的企业开始采用容器化技术来部署和管理应用程序。然而,容器化环境的复杂性和动态性给运维团队带来了前所未有的挑战。本文将从PID(进程标识符)监控入手,探讨运维团队如何高效…...
通过vue3 + TypeScript + uniapp + uni-ui 实现下拉刷新和加载更多的功能
效果图: 核心代码: <script lang="ts" setup>import { ref, reactive } from vue;import api from @/request/api.jsimport empty from @/component/empty.vueimport { onLoad,onShow, onPullDownRefresh, onReachBottom } from @dcloudio/uni-applet form …...
Pointnet++改进即插即用系列:全网首发WTConv2d大接受域的小波卷积|即插即用,提升特征提取模块性能
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入WTConv2d,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一 2.2 步骤二 2.3 步骤三 1.理…...
4核16G服务器支持多少人?4C16G服务器性能测评
租赁4核16G服务器费用,目前4核16G服务器10M带宽配置70元1个月、210元3个月,那么能如何呢?配置为ECS经济型e实例4核16G、按固定带宽10Mbs、100GB ESSD Entry系统盘。 那么问题来了,4C16G10M带宽的云服务器可以支持多少人同时在线&…...
塔子哥的平均数-美团2023笔试(codefun2000)
题目链接 塔子哥的平均数-美团2023笔试(codefun2000) 题目内容 给定一个正整数数组a1 ,a2 ,…,an,求平均数正好等于k的最长连续子数组的长度 输入描述 输出描述 输出一个整数,表示最长满足题目条件的长度。 样例1 输入 5 2 1 3 2 4 1 输出 3 样例1解释…...
故障诊断 | 基于小波包能量谱对滚动轴承的故障诊断Matlab代码
故障诊断 | 基于小波包能量谱对滚动轴承的故障诊断Matlab代码 目录 故障诊断 | 基于小波包能量谱对滚动轴承的故障诊断Matlab代码效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于小波包能量谱对滚动轴承的故障诊断 matlab代码 数据采用的是凯斯西储大学数据 首先利用…...
E14.【C语言】练习:有关短路运算
#include <stdio.h> int main() {int i 0,a0,b2,c 3,d4;i a && b && d;printf("a %d\nb %d\nc %d\nd %d\n", a, b, c, d);return 0; } 求输出结果 分析: a:先使用后 ,a(见第15篇http://…...
python BeautifulSoup库安装与使用(anaconda、pip)
BeautifulSoup 是一个可以从HTML或XML文件中提取数据的Python库。Beautiful Soup 已成为和 lxml、html5lib 一样出色的Python解释器,为用户灵活地提供不同的解析策略或强劲的速度。 Requests 获取html BeautifulSoup 解析html、xml,BeautifulSoup4库也称bs4库 安装B…...
想做个人域名网站怎么做/营销推广费用方案
2019独角兽企业重金招聘Python工程师标准>>> 伴随lambda表达式、streams以及一系列小优化,Java 8 推出了全新的日期时间API,在教程中我们将通过一些简单的实例来学习如何使用新API。Java处理日期、日历和时间的方式一直为社区所诟病ÿ…...
网站推广方案策划书/怎么可以让百度快速收录视频
熬夜删掉Linux中删除不掉的文件<?xml:namespace prefix o ns "urn:schemas-microsoft-com:office:office" />今天在做关于shell的作业时不知咋的生成了一个一–z开头的文件,怎么删都删不掉,如图:<?xml:namespace pref…...
宁波网络公司网站建设项目/做seo需要投入的成本
linux 设备驱动之 8250 串口驱动------------------------------------------本文系本站原创,欢迎转载!转载请注明出处:http://ericxiao.cublog.cn/------------------------------------------一:前言前一段时间自己实践了一下8250芯片串口驱动的编写。今天就在此基…...
有没有免费网站空间/百度竞价推广教程
数据库可以看作是一个专门存储数据对象的容器,每一个数据库都有唯一的名称,并且数据库的名称都是有实际意义的,这样就可以清晰的看出每个数据库用来存放什么数据。在 MySQL 数据库中存在系统数据库和自定义数据库,系统数据库是在安…...
网站开发项目源码/营销平台建设
参考链接: http://www.desktx.com/news/diannaojiqiao/4369.html 1、新建一个文本文档,将下面的代码复制进去: [Version] Signature"$Chicago$" [DefaultInstall] DelRegDeleteMe [DeleteMe] HKCU,"Software\Microsoft\Wind…...
wordpress 栏目设置/推广普通话手抄报内容50字
对于云计算,我们已不再陌生,以下是Live Mesh基于Cloud Service的大体架构图:(图片来自wikipedia) 对于各种新技术的推出,我们总是欣喜若狂,就拿Live Mesh来说,据介绍说是微软打造的(…...