数学建模--优劣解距离法TOPSIS
目录
简介
TOPSIS法的基本步骤
延伸
优劣解距离法(TOPSIS)的历史发展和应用领域有哪些?
历史发展
应用领域
如何准确计算TOPSIS中的理想解(PIS)和负理想解(NIS)?
TOPSIS方法在处理多指标评价系统时的优势和局限性是什么?
优势
局限性
与优劣解距离法相比,还有哪些其他评价方法可以用来比较多个方案的优劣?
在实际应用中,如何选择合适的指标集来构建TOPSIS模型?
简介
优劣解距离法(Technique for Order Preference by Similarity to an Ideal Solution,简称TOPSIS)是一种常用的综合评价方法,由C.L.Hwang和K.Yoon在1981年首次提出。该方法通过检测评价对象与最优解、最劣解的距离来进行排序,把距离作为评价标准。
TOPSIS法的基本步骤
- 正向化处理:将原始数据矩阵统一指标类型,一般进行正向化处理,使得所有指标都为正值。
- 标准化处理:为了消除计量单位不同的影响,需要对正向化后的矩阵进行标准化处理。标准化的目的是使各指标在同一标准下可比。
- 计算得分并归一化:计算每个方案的得分,并进行归一化处理,以确保各方案的得分在同一个范围内。
- 计算与理想解的距离:计算每个方案到理想解(PIS)和负理想解(NIS)的距离。理想解是所有指标最大值的组合,而负理想解是所有指标最小值的组合。
- 排序和选择最优方案:根据每个方案到理想解和负理想解的距离进行排序,距离理想解近且距离负理想解远的方案被认为是更好的方案。
TOPSIS法的优势在于能够充分利用原始数据的信息,并能更精确地反映出各个评价方案之间的差距。此外,它还具有较强的适应性和灵活性,可以应用于多种领域和问题的解决。
总结来说,优劣解距离法通过计算评价对象与理想解及负理想解的距离来进行排序,从而确定最优方案。这种方法不仅能够全面客观地反映各评价方案之间的差距,还能有效地克服主观因素的影响。
延伸
优劣解距离法(TOPSIS)的历史发展和应用领域有哪些?
优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,简称TOPSIS)是由C.L. Hwang和K.Yoon于1981年首次提出的多标准决策分析方法。该方法的核心思想是通过计算各方案与理想解及负理想解之间的距离来进行排序,从而确定最优方案。
历史发展
TOPSIS法自提出以来,因其简洁有效且易于操作的特点,在学术界和工业界得到了广泛的应用和认可。其历史发展可以分为以下几个阶段:
- 初始阶段:1981年,Hwang和Yoon首次提出TOPSIS模型,并在多个领域进行了初步应用。
- 扩展与改进阶段:随后,学者们对TOPSIS法进行了多种扩展和改进,例如引入熵权法以提高评价的客观性和准确性。
- 结合人工智能阶段:近年来,TOPSIS法与人工智能技术的结合成为研究热点,进一步提升了决策分析的智能化水平。
应用领域
TOPSIS法在多个领域都有广泛应用,具体包括:
- 生产经济:用于生产规划、资源分配和技术选择等。
- 交通运输:在交通规划和管理中,如选址决策和供应商选择等场景中得到应用。
- 供应链管理:用于优化供应链管理决策,提高效率和效果。
- 环境保护:在环境评估和资源管理中,帮助决策者进行综合评估和比较。
- 医疗保健:在医院设备采购、药品评价等方面发挥重要作用。
- 教育:在教育资源配置、课程设置等方面提供支持。
- 企业财务风险评价:如酒鬼酒公司案例所示,利用熵权TOPSIS法进行财务风险评估。
如何准确计算TOPSIS中的理想解(PIS)和负理想解(NIS)?
在TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)方法中,理想解法是一种有效的多指标评价方法。其核心在于通过计算各方案与正理想解和负理想解的相对贴近度来对方案进行排序,从而选出最优方案。以下是准确计算TOPSIS中的理想解(PIS)和负理想解(NIS)的详细步骤:
首先需要对原始数据进行预处理,以消除不同量纲的影响并转换成统一的评价标准。这通常包括归一化处理或标准化处理。
根据专家评分或相关研究确定各指标的权重,并构建加权矩阵。这一步骤是基于各指标在评价体系中的重要性来进行的。
正理想解(PIS)是指各指标取最优值的组合,而负理想解(NIS)是指各指标取最劣值的组合。具体计算如下:
- 正理想解(PIS):对于每个指标,取所有方案中该指标的最大值作为正理想解。
- 负理想解(NIS):对于每个指标,取所有方案中该指标的最小值作为负理想解。
对于每个方案,分别计算其到正理想解和负理想解的距离。常用的方法是欧几里得距离,即:
其中,𝑥𝑖xi是方案i的第i个指标值,𝑃𝐼𝑆𝑖PISi和𝑁𝐼𝑆𝑖NISi分别是正理想解和负理想解的第i个指标值。相对贴近度用于衡量每个方案与正理想解的接近程度以及与负理想解的远离程度。计算公式如下:
其中,𝐶𝑖Ci是方案i的相对贴近度。根据相对贴近度对各方案进行排序,相对贴近度越高的方案越优。最终可以得出最优方案。
TOPSIS方法在处理多指标评价系统时的优势和局限性是什么?
TOPSIS方法(Technique for Order Preference by Similarity to Ideal Solution)是一种在多指标评价系统中常用的决策分析方法,具有以下优势和局限性:
优势
- 综合考虑多个影响因素:TOPSIS方法能够同时处理多个评价指标,并且可以考虑各指标之间的相互影响,为决策者提供科学的决策支持。
- 避免数据主观性:该方法不需要目标函数,避免了数据的主观性,能够很好地刻画多个影响指标的综合影响力度。
- 计算简单、结果直观:TOPSIS算法易于理解和操作,结果直观,便于决策者快速做出判断。
- 适应性强:TOPSIS方法对数据分布、样本数量及指标数量没有严格限制,能够处理极大型与极小型指标,适用于多样本和少样本的情况。
- 充分利用原始数据:该方法可以充分利用原始数据,信息损失较少,使得评价结果更加可靠和准确。
局限性
- 理想解和负理想解的假设问题:TOPSIS方法假设理想解和负理想解是唯一的、固定的。然而,在实际决策中,这些理想解可能会发生变化,这限制了TOPSIS方法的适用性和决策结果的准确性。
- 对各方案优劣刻画不够精细:尽管TOPSIS方法能够排列对象的优劣次序,但其对各方案与正负理想解的距离仅作相对比较,无法有效度量各方案的详细差异,导致对各方案优劣的刻画不够精细。
- 权重确定的复杂性:虽然熵权法等可以提高TOPSIS模型的精确性和客观性,但在传统TOPSIS方法中,属性赋权往往存在不精确和自相矛盾的问题。
TOPSIS方法在处理多指标评价系统时具有显著的优势,如综合考虑多个影响因素、避免数据主观性、计算简单等。然而,它也存在一些局限性,如理想解和负理想解的假设问题以及对各方案优劣刻画不够精细等。
与优劣解距离法相比,还有哪些其他评价方法可以用来比较多个方案的优劣?
与优劣解距离法相比,还有多种其他评价方法可以用来比较多个方案的优劣。以下是一些常见的评价方法:
SWOT分析:通过识别和评估每个方案的优势、劣势、机会和威胁,帮助决策者全面了解各方案的优缺点。
成本效益分析:这种方法通过计算每个方案的成本与收益比值来评估其经济合理性,从而选择最优方案。
实施可行性分析:评估方案在实际操作中的可行性,包括技术、资金、时间等各方面因素。
互斥方案评价方法:
- 绝对效果检验:检验方案自身是否可行,筛选出可行的方案。
- 相对效果检验:在可行的方案中选择最优方案。
净现值(NPV)法:通过计算各方案的净现值,比较其现值总额与其费用现值总额之比,从而确定哪个方案更有价值。
内部收益率(IRR)法:计算两方案净现值相等时的内部收益率,若Δ IRR>ic,则投资大的方案为优。
综合评价方法:运用多方案评价的指标及综合评价方法,对项目机会研究和可行性研究中提出的众多方案进行比较分析,从中选出技术先进、经济合理的方案。
在实际应用中,如何选择合适的指标集来构建TOPSIS模型?
在实际应用中,选择合适的指标集来构建TOPSIS模型需要考虑以下几个方面:
首先,根据具体问题的背景和需求,确定评价对象和相应的评价指标。例如,在煤矿优劣性评估中,可以选取“粉尘浓度”、“二氧化硫量”和“肺病患病率”作为评价指标。
对于不同的评价指标,需要进行同趋势化处理,即高优指标数值越高越好,低优指标数值越小越好。然后对这些指标进行归一化处理,以消除量纲的影响并确保各指标在同一标准下可比。
权重的确定是TOPSIS模型中的关键步骤之一。常用的方法包括层次分析法(AHP)、熵权法、组合赋权法等。例如,可以通过AHP法计算各指标的相对重要性,或者使用熵权法根据数据的离散程度来确定权重。此外,还可以结合多种方法来提高权重确定的科学性和准确性。
在确定了评价指标和权重之后,需要构造初始矩阵和标准化矩阵。初始矩阵包含了所有评价对象在各个指标上的原始数据,而标准化矩阵则是将这些数据经过归一化处理后的结果。
利用标准化矩阵,计算每个评价对象与正理想解和负理想解的距离,并据此计算其状态指数。正理想解是指所有指标值均为最优的情况,而负理想解则是所有指标值均为最差的情况。
最后,根据每个评价对象的贴近度进行排序,贴近度越大,表明该评价对象越接近正理想解,因此其综合评价结果越好。
相关文章:
数学建模--优劣解距离法TOPSIS
目录 简介 TOPSIS法的基本步骤 延伸 优劣解距离法(TOPSIS)的历史发展和应用领域有哪些? 历史发展 应用领域 如何准确计算TOPSIS中的理想解(PIS)和负理想解(NIS)? TOPSIS方法在…...
Springboot开发之 Excel 处理工具(三) -- EasyPoi 简介
引言 Springboot开发之 Excel 处理工具(一) – Apache POISpringboot开发之 Excel 处理工具(二)-- Easyexcel EasyPoi是一款基于 Apache POI 的高效 Java 工具库,专为简化 Excel 和 Word 文档的操作而设计。以下是对…...
【BUG】已解决:python setup.py bdist_wheel did not run successfully.
已解决:python setup.py bdist_wheel did not run successfully. 目录 已解决:python setup.py bdist_wheel did not run successfully. 【常见模块错误】 解决办法: 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主…...
Java 中如何支持任意格式的压缩和解压缩
👆🏻👆🏻👆🏻关注博主,让你的代码变得更加优雅。 前言 Hutool 是一个小而全的Java工具类库,通过静态方法封装,降低相关API的学习成本,提高工作效率…...
从零开始实现大语言模型(八):Layer Normalization
1. 前言 Layer Normalization是深度学习实践中已经被证明非常有效的一种解决梯度消失或梯度爆炸问题,以提升神经网络训练效率及稳定性的方法。OpenAI的GPT系列大语言模型使用Layer Normalization对多头注意力模块,前馈神经网络模块以及最后的输出层的输入张量做变换,使shap…...
<数据集>混凝土缺陷检测数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:7353张 标注数量(xml文件个数):7353 标注数量(txt文件个数):7353 标注类别数:6 标注类别名称:[exposed reinforcement, rust stain, Crack, Spalling, Efflorescence…...
【LabVIEW作业篇 - 3】:数组相加、for循环创建二位数组、数组练习(求最大最小值、平均值、中位数、提取范围内的数据、排序)
文章目录 数组相加for循环实现直接使用加函数 for循环创建二位数组数组练习 数组相加 要求:用两种方法实现两个数组相加 for循环实现 在前面板中分别创建两个数值类型的一维数组,并设置相应的值,然后在程序框图中创建一个for循环ÿ…...
Unity动画系统(4)
6.3 动画系统高级1-1_哔哩哔哩_bilibili p333- 声音组件添加 using System.Collections; using System.Collections.Generic; using UnityEngine; public class RobotAnimationController : MonoBehaviour { [Header("平滑过渡时间")] [Range(0,3)] publ…...
React基础学习-Day08
React基础学习-Day08 React生命周期(旧)(新)(函数组件) (旧) 在 React 16 版本之前,React 使用了一套不同的生命周期方法。这些生命周期方法在 React 16 中仍然可以使用…...
Flowable的学习一
今日项目用到了Flowable。简单记录下。 学习中 参考了网上资料: 工作流-Activiti7-基础讲解_activity工作流-CSDN博客 https://juejin.cn/post/7158342433615380517 flowable实战(九)flowable数据库表中流程实例、活动实例、任务实例三者…...
django-vue-admin项目运行
文本主要对django-vue-admin项目进行了简要介绍,并且对前后端进行了源码安装和运行。在此基础上可作为管理系统二次开发的基础框架。 一.django-vue-admin简介和安装 1.简介 django-vue-admin项目是基于RBAC模型权限控制的中小型应用的基础开发平台,采…...
4. docker镜像、Dockerfile
docker镜像、Dockerfile 一、docker镜像1、镜像介绍2、镜像核心技术 二、Dockerfile定制镜像1、Dockerfile使用流程1.1 编写Dockerfile1.2、构建镜像1.3 创建容器测试镜像定制操作 2、Dockerfile常用指令 三、部署springcloud微服务架构的商品秒杀项目1、部署项目需要的基础服务…...
智能水果保鲜度检测:基于YOLO和深度学习的完整实现
引言 水果新鲜程度直接影响其口感和营养价值。为了提高水果品质管理的效率和准确性,本文介绍了一种基于深度学习的水果新鲜程度检测系统。该系统包括用户界面,利用YOLO(You Only Look Once)v8/v7/v6/v5模型进行水果新鲜程度检测&…...
C#中implicit 关键字的使用:隐式转换操作符
在 C# 中,implicit 关键字用于定义隐式转换操作符。隐式转换操作符允许自动将一种数据类型转换为另一种类型,而无需显式地调用转换方法或进行类型转换。下面将详细介绍 implicit 关键字的定义和使用。 1. 隐式转换操作符 定义 隐式转换操作符可以定义在一个类或结构体中,…...
Laravel表单验证:自定义规则的艺术
Laravel表单验证:自定义规则的艺术 在Web应用开发中,表单验证是确保数据完整性和安全性的关键步骤。Laravel提供了一个强大且灵活的验证系统,允许开发者定义自定义验证规则,以满足特定的业务需求。本文将详细介绍如何在Laravel中…...
Linux中的环境变量
一、环境变量定义 一般是指在操作系统中用来指定操作系统运行环境的一些参数 如:我们在编写C/C代码的时候,在链接的时候,从来不知道我们的所链接的动态静态库在哪里,但 是照样可以链接成功,生成可执行程序,…...
关于集成网络变压器的RJ45网口
集成网络变压器的RJ45网口是一种将网络变压器与RJ45接口集成在一起的网络连接解决方案。这种集成设计具有多项优势,使其在现代网络设备中得到广泛应用。 优势与特点 1. **空间节省**:集成设计减少了组件数量和连接线缆长度,有助于节省设备内…...
JMX 反序列化漏洞
前言 前段时间看到普元 EOS Platform 爆了这个洞,Apache James,Kafka-UI 都爆了这几个洞,所以决定系统来学习一下这个漏洞点。 JMX 基础 JMX 前置知识 JMX(Java Management Extensions,即 Java 管理扩展࿰…...
【Qt】常用控件 Q widget的enabled属性,geometry属性
Qt是一个实现图形化程序的程序。为了便于我们开发,Qt为我们提供了许多“控件”。我们需要熟悉并掌握这些控件的使用。 一.什么是控件 控件是构成⼀个图形化界⾯的基本要素. 示例一: 像上述⽰例一中的,按钮,列表视图,树形视图,单⾏输⼊框,多⾏输⼊框,滚动…...
Unity3d开发google chrome的dinosaur游戏
游戏效果 游戏中: 游戏中止: 一、制作参考 如何制作游戏?【15分钟】教会你制作Unity小恐龙游戏!新手15分钟内马上学会!_ unity教学 _ 制作游戏 _ 游戏开发_哔哩哔哩_bilibili 二、图片资源 https://download.csdn.…...
【数据分享】2013-2022年我国省市县三级的逐日SO2数据(excel\shp格式\免费获取)
空气质量数据是在我们日常研究中经常使用的数据!之前我们给大家分享了2000——2022年的省市县三级的逐日PM2.5数据和2013-2022年的省市县三级的逐日CO数据(均可查看之前的文章获悉详情)! 本次我们分享的是我国2013——2022年的省…...
【玩转C语言】第五讲--->数组-->一维和多维深度理解
🔥博客主页🔥:【 坊钰_CSDN博客 】 欢迎各位点赞👍评论✍收藏⭐ 引言: 大家好,我是坊钰,为了让大家深入了解C语言,我开创了【玩转C语言系列】,将为大家介绍C语言相关知识…...
Apache Flink 任务提交模式
Flink 任务提交模式 Flink可以基于多种模式部署:基于Standalone 部署模式,基于Yarn部署模式,基于Kubernetes部署模式以上不同集群部署模式下提交Flink任务会涉及申请资源,各角色交互过程,不同模式申请资源涉及到的角色…...
Ubuntu22.04安装OMNeT++
一、官网地址及安装指南 官网地址:OMNeT Discrete Event Simulator 官网安装指南(V6.0.3):https://doc.omnetpp.org/omnetpp/InstallGuide.pdf 官网下载地址:OMNeT Downloads 旧版本下载地址:OMNeT Old…...
Matlab课程设计——手指静脉识别项目
手指静脉识别项目 项目方案设计介绍 本项目实现手指图像的处理和匹配算法,需要处理的数据是本人不同手指的图像,首先经过图像处理,使得指静脉的纹理增强凸显处理,然后将所有的这些图像进行相互间的匹配,检验类内和类…...
centos软件安装
安装方式 一、二进制安装 --解压即用,只针对特殊平台 --jdk tomcat 二、RPM:按照一定规范安装软件,无法安装依赖的文件 --mysql 三、yum:远程安装基于RPM,把依赖的文件安装上去,需要联网 四、源码安装 jdk安…...
力扣 217. 存在重复元素,389. 找不同,705. 设计哈希集合,3. 无重复字符的最长子串,139. 单词拆分
217. 存在重复元素 题目 给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 ,返回 true ;如果数组中每个元素互不相同,返回 false 。 AC代码 class Solution { public:bool containsDuplicate(vector<int>& nums) {// …...
嵌入式软件工作能力
1. 工作能力 技术能力强,并不代表工作能力 2. 流程把控 3. 项目管理 4. “找茬”能力 5. 文档输出能力...
景区导航导览系统:基于AR技术+VR技术的功能效益全面解析
在数字化时代背景下,游客对旅游体验的期望不断提升。游客们更倾向于使用手机作为旅行的贴身助手,不仅因为它能提供实时、精准的导航服务,更在于其融合AR(增强现实)、VR(虚拟现实)等前沿技术&…...
Mybatis-Plus代码生成器配置方法
Mybatis-Plus网址:https://baomidou.com/pages/779a6e/#%E4%BD%BF%E7%94%A8 第一步:引入依赖 <!-- 代码生成器 --> <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-generator</artifactId>…...
室内设计师的网站/sem投放是什么意思
反向代理简介----服务器的代理代理服务器是使用非常普遍的一种将局域网主机联入互联网的一种方式,使用代理上网可以节约紧缺的IP地址资源,而且可以阻断外部主机对内部主机的访问,使 内部网主机免受外部网主机的***。但是,如果想让…...
重庆网站建设 狐灵/软文营销的优势
#开始学习HTML,关于几种简单的标签(上) ##1.标签的意义和用途 标签的用途:我们学习网页制作时,常常会听到一个词,语义化。那么什么叫做语义化呢,说的通俗点就是:明白每个标签的用途&…...
分享代码的网站/小程序开发教程全集免费
机动目标跟踪——交互式多模型算法IMM 原创不易,路过的各位大佬请点个赞 WX: ZB823618313 机动目标跟踪——交互式多模型算法IMM机动目标跟踪——交互式多模型算法IMM1. 对机动目标跟踪的理解2. 机动目标跟踪方法概述3. 交互式多模型:概述4. 交互式多模…...
wordpress 代码框/防疫管控优化措施
1.字符方式读写函数fgetc( )和fputc( ) 逐个字符读写函数,fgetc函数实现从fp所指式的磁盘文件读入一个字符待ch。 函数调用格式: chfgetc(fp); //该函数的功能于getchar()函数功能相似,从键盘上读取一个字符; fgetc函数实现把…...
360度全景网站的公司/友情链接发布网
转自:https://blog.csdn.net/longfei_2010/article/details/79785320 1、编辑(Editing) Ctrl Space 基本的代码完成(类、方法、属性) Ctrl Alt Space 快速导入任意类 Ctrl Shift Enter 语句完成 Ctrl P 参数信息…...
北京网站建设app/国外域名注册平台
内容来源于悟空问答"如何看待程序员在火车站候车室写代码画面曝光?"作者:大学生编程指南原文可点击阅读全文前去围观。10月2日,有网友曝光了某程序员在火车站候车室写代码的画面,网友评价这是程序员的悲哀。大过节的,许…...