当前位置: 首页 > news >正文

关于利用FFT分析时域信号幅相的思考与验证



引言

利用FFT分析/估计时域信号的幅度和相位,属于传统估计的范畴。估计的准确程度受频率分辨率的影响较大。如果被估计的目标频率等于频率分辨率的整数倍,信号的幅相估计都是最准确的。一旦目标频率不等于频率分辨率的整数倍,幅度估计值将会降低,相位估计值会偏差很大。

下面会通过一些仿真来验证。

单点频实信号估计

信号幅值:10

信号相位:45°

信号频率:100Hz

信号类型:实信号

采样率:1000Hz

采样点数:100

频率分辨率:10Hz

信号频率等于分辨率整数倍

MATLAB代码:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=-pi/8;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 注意,此处分析的双边谱,所以每边高度为 10/2 = 5;

相位估计很准确,是45°相位。

信号频率不等于分辨率整数倍

如果改变采样点数(改为128),使得频率分辨率变化,不等于分辨率的整数倍,则:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=pi/4;
N=128;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,发现频率、幅度估值有微小偏差,相位的估计值几乎不可信

信号频率等于分辨率整数倍,加噪声

考虑噪声影响:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=pi/4;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0) + 2*randn(1,N);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,信号的频率估计准确,但是幅度和相位的估计存在微小误差。

多点频实信号估计

信号的频点均位于频率分辨率整数倍的位置:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=pi/4;
f1=2e2;
p1=pi/2;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0) + 4*cos(2*pi*f1*t+p1);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

对于多点频信号,只要信号频点均位于分辨率整数倍的位置,其估值都十分准确。

多点频复信号估计

下面再试验一下复信号:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=pi/4;
f1=2e2;
p1=pi/2;
N=100;
t=(0:N-1)/fs;
s=10*exp(1j*(2*pi*f0*t+p0)) + 4*exp(1j*(2*pi*f1*t+p1));
figure;
subplot(411)
plot(real(s))
title('时域波形(实部)');xlabel('采样点数');ylabel('采样幅度')subplot(412)
plot(imag(s))
title('时域波形(虚部)');xlabel('采样点数');ylabel('采样幅度')subplot(413)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(414)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,可以看出,复信号同样满足上述结论,即信号频率位于分辨率整数倍位置时,用FFT可以精确估计其频率和相位。

结论

结尾处再次说明一下:

不论是是信号还是复信号:

  1. 不加噪声时,位于分辨率整数倍处的信号频率、相位均可以被精确估算;
  2. 不加噪声时,不位于分辨率整数倍处的信号频率的估计存在微小误差、相位估计值基本不可信
  3. 加噪声时,位于分辨率整数倍处的信号频率可以被精确估算,相位估算存在微小偏差;

可以结合代码和仿真进行理解,如有疑问,评论区留言吧~~

相关文章:

关于利用FFT分析时域信号幅相的思考与验证

引言 利用FFT分析/估计时域信号的幅度和相位,属于传统估计的范畴。估计的准确程度受频率分辨率的影响较大。如果被估计的目标频率等于频率分辨率的整数倍,信号的幅相估计都是最准确的。一旦目标频率不等于频率分辨率的整数倍,幅度估计值将会…...

基于java中的Springboot框架实现餐厅点餐系统展示

基于java中的Springboot框架实现餐厅点餐系统开发语言和工具 开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 21世纪的今天,随着社会的不断发展与进步,人们对…...

案例07-在线人员列表逻辑混乱

一、背景介绍 在线人员列表涉及到的问题: 类中写了公共变量最后导致数据混乱现象 保存数据没有考虑业务的隔夜覆盖导致的逻辑漏洞 涉及到继承,对于this,如果父类有同样的成员最终使用哪一个? 参数不一致导致后续维护混乱 mysql由…...

Java集合框架

Java集合框架是Java编程语言所提供的一种便捷的数据结构的实现。Java集合框架提供了一种统一的接口和机制来访问和操作集合中的元素,这些元素可以是对象、基本数据类型或其他集合。Java集合框架是Java应用程序中最常用的特性之一,它为开发人员提供了许多…...

奇异值分解(SVD)原理与在降维中的应用

奇异值分解(SVD)原理与在降维中的应用 奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算…...

GDB调试程序

1.GDB 调试程序 GDB是GNU开源组织发布的一个强大的UNIX下的程序调试工具。在UNIX平台下做软件,GDB这个调试工具有比VC的图形化调试器更强大的功能。所谓“寸有所长,尺有所短”就是这个道理。 一般来说,GDB主要帮忙你完成下面四个方面的功能…...

五种IO模型

用户空间与内核空间 操作系统把内存空间划分成了两个部分:内核空间和用户空间。 为了保护内核空间的安全,操作系统一般都限制用户进程直接操作内核。 所以,当我们使用TCP发送数据的时候,需要先将数据从用户空间拷贝到内核空间&a…...

5 全面认识java的控制流程

全面认识java控制流程1.块作用域2.条件语句3.迭代语句3.1while语句3.2do-while语句3.3for语句3.4 for-in语法4.中断控制流程的语句4.1 return4.2 break和continue4.2.1 不带标签的break语句4.2.2 带标签的break语句4.2.3 continue语句4.3 goto()5.多重选择:switch语句1.块作用域…...

第二章 测验【嵌入式系统】

第二章 测验【嵌入式系统】前言推荐第二章 测验【嵌入式系统】最后前言 以下内容源自《嵌入式系统》 仅供学习交流使用 推荐 第一章 测验【嵌入式系统】 第二章 测验【嵌入式系统】 1单选题 32bit宽的数据0x12345678 在小端模式(Little-endian)模式…...

排序算法之插入排序

要考数据结构了,赶紧来复习一波排序算法 文章目录一、直接插入排序二、希尔排序一、直接插入排序 直接上主题 插排,揪出一个数,插入到原本已经有序的数组里面,如数组有n个数据,从0~n下标依次排列,先从左往…...

Kaggle实战入门:泰坦尼克号生生还预测

Kaggle实战入门:泰坦尼克号生生还预测1. 加载数据2. 特征工程3. 模型训练4. 模型部署泰坦尼克号(Titanic),又称铁达尼号,是当时世界上体积最庞大、内部设施最豪华的客运轮船,有“永不沉没”的美誉&#xff…...

【大汇总】11个Python开发经典错误(1)

“但是太阳,他每时每刻都是夕阳也都是旭日。当他熄灭着走下山去收尽苍凉残照之际,正是他在另一面燃烧着爬上山巅散烈烈朝晖之时。” --------史铁生《我与地坛》 🎯作者主页:追光者♂🔥 🌸个人简介:计算机专业硕士研究生💖、2022年CSDN博客之星人工智能领…...

Java中的异常

程序错误一般分为三种:编译错误: 编写程序时没有遵循语法规则,编译程序能够自己发现错误并提示位置和原因。运行错误:程序在执行的时候运行环境发现了不能执行的操作。比如,JVM出错了,内存溢出等。逻辑错误…...

L2-022 重排链表 L2-002 链表去重

给定一个单链表 L1 →L2→⋯→L n−1 →L n ,请编写程序将链表重新排列为 L n →L 1 →L n−1 →L 2 →⋯。例如:给定L为1→2→3→4→5→6,则输出应该为6→1→5→2→4→3。 输入格式: 每个输入包含1个测试用例。每个测试用例第1行…...

【手撕八大排序】——插入排序

文章目录插入排序概念插入排序分为2种一 .直接插入排序直接插入排序时间复杂度二.希尔排序希尔排序时间复杂度效率比较插入排序概念 直接插入排序是从一个有序的序列中选择一个合适的位置进行插入,这个合适的位置取决于是要升序排序还是降序排序。 每一次进行排序…...

flink多流操作(connect cogroup union broadcast)

flink多流操作1 分流操作2 connect连接操作2.1 connect 连接(DataStream,DataStream→ConnectedStreams)2.2 coMap(ConnectedStreams → DataStream)2.3 coFlatMap(ConnectedStreams → DataStream)3 union操作3.1 uni…...

漫画:什么是快速排序算法?

这篇文章,以对话的方式,详细着讲解了快速排序以及排序排序的一些优化。 一禅:归并排序是一种基于分治思想的排序,处理的时候可以采取递归的方式来处理子问题。我弄个例子吧,好理解点。例如对于这个数组arr[] { 4&…...

vue 3.0组件(下)

文章目录前言:一,透传属性和事件1. 如何“透传属性和事件”2.如何禁止“透传属性和事件”3.多根元素的“透传属性和事件”4. 访问“透传属性和事件”二,插槽1. 什么是插槽2. 具名插槽3. 作用域插槽三,单文件组件CSS功能1. 组件作用…...

双指针 -876. 链表的中间结点-leetcode

开始一个专栏,写自己的博客 双指针,也算是作为自己的笔记吧! 双指针从广义上来说,是指用两个变量在线性结构上遍历而解决的问题。狭义上说, 对于数组,指两个变量在数组上相向移动解决的问题;对…...

Linux之运行级别

文章目录一、指定运行级别基本介绍CentOS7后运行级别说明一、指定运行级别 基本介绍 运行级别说明: 0:关机 1:单用户【找回丢失密码】 2:多用户状态没有网络服务 3:多用户状态有网络服务 4:系统未使用保留给用户 5:图形界面 6:系统重启 常用运行级别是3和5,也可以…...

SpringTask-03.入门案例

一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

大数据学习(132)-HIve数据分析

​​​​🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言&#x1f4…...

基于 TAPD 进行项目管理

起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

从实验室到产业:IndexTTS 在六大核心场景的落地实践

一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面,我们会实现这个普通的工厂方法,并且对比这个普通工厂方法和我们直接创建对象的差别在哪里,为什么需要一个工厂: 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类: 两个发…...