当前位置: 首页 > news >正文

scikit-learn库学习之make_regression函数

scikit-learn库学习之make_regression函数

一、简介

make_regression是scikit-learn库中用于生成回归问题数据集的函数。它主要用于创建合成的回归数据集,以便在算法的开发和测试中使用。

二、语法和参数

sklearn.datasets.make_regression(n_samples=100, n_features=100, *, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
  • n_samples: int, 可选,样本数量,默认值为100。
  • n_features: int, 可选,特征数量,默认值为100。
  • n_informative: int, 可选,有用特征的数量,默认值为10。
  • n_targets: int, 可选,目标变量的数量,默认值为1。
  • bias: float, 可选,偏置项,默认值为0.0。
  • effective_rank: int 或 None, 可选,矩阵的有效秩(生成具有指定有效秩的低秩矩阵)。
  • tail_strength: float, 可选,稀疏奇异值分解的尾部强度,默认值为0.5。
  • noise: float, 可选,噪声的标准差,默认值为0.0。
  • shuffle: boolean, 可选,是否在生成样本后对其进行洗牌,默认值为True。
  • coef: boolean, 可选,如果为True,则返回线性模型的系数,默认值为False。
  • random_state: int, RandomState instance 或 None, 可选,随机数生成器的种子。

三、实例

3.1 生成具有默认参数的回归数据集
import numpy as np
from sklearn.datasets import make_regression# 生成回归数据集
X, y = make_regression()print("特征矩阵X:\n", X)
print("目标变量y:\n", y)

输出:

特征矩阵X:[[ 0.22149882 -0.06453352  0.12052486 ... -0.82411415  0.23856925-0.16168211][-0.20101287 -0.44072967 -1.14649484 ...  0.63646684 -0.425003860.4671914 ]...[ 0.90505363 -0.53703078  0.50773971 ...  1.14990328  0.05411115-0.08363001]]
目标变量y:[-144.31924045  181.62052712  -48.9289649  ...  235.29125152223.43232493  102.79266155]
3.2 生成带有噪声和偏置的回归数据集
import numpy as np
from sklearn.datasets import make_regression# 生成带有噪声和偏置的回归数据集
X, y = make_regression(noise=10.0, bias=100.0)print("特征矩阵X:\n", X)
print("目标变量y:\n", y)

输出:

特征矩阵X:[[ 1.24086241  0.00303736  1.17925455 ... -1.07069539  0.93889406-0.22232984][-0.74205332  0.65462794  0.14662052 ... -0.59564518  1.286698671.00484528]...[ 1.00952406 -0.34893754  0.04816599 ...  0.53224443  1.08944202-0.68298357]]
目标变量y:[  97.85236613   57.67386596  143.4882752  ...  -43.32816291-160.72606466  -91.79449558]
3.3 生成指定有效秩的回归数据集
import numpy as np
from sklearn.datasets import make_regression# 生成指定有效秩的回归数据集
X, y = make_regression(effective_rank=2)print("特征矩阵X:\n", X)
print("目标变量y:\n", y)

输出:

特征矩阵X:[[-0.13033419 -0.11927356 -0.1261044  ... -0.11075221 -0.09502064-0.15613214][-0.12111371 -0.1146456  -0.1225812  ... -0.10441777 -0.09032011-0.14703234]...[-0.13796815 -0.12383917 -0.13535568 ... -0.11880625 -0.10313284-0.17030849]]
目标变量y:[-123.66530542 -143.25411773 -127.83807546 ... -145.23413153-131.64245155 -124.93295103]

四、注意事项

  • 参数n_samplesn_features决定了生成数据集的大小和维度。
  • n_informative参数决定了有用特征的数量,这些特征对目标变量有显著影响。
  • noise参数添加到目标变量中的噪声,值越大,数据越不纯。
  • 设置random_state参数以确保每次生成数据的一致性。
  • 如果需要生成指定秩的矩阵,可以使用effective_rank参数。

相关文章:

scikit-learn库学习之make_regression函数

scikit-learn库学习之make_regression函数 一、简介 make_regression是scikit-learn库中用于生成回归问题数据集的函数。它主要用于创建合成的回归数据集,以便在算法的开发和测试中使用。 二、语法和参数 sklearn.datasets.make_regression(n_samples100, n_feat…...

经典文献阅读之--World Models for Autonomous Driving(自动驾驶的世界模型:综述)

Tip: 如果你在进行深度学习、自动驾驶、模型推理、微调或AI绘画出图等任务,并且需要GPU资源,可以考虑使用UCloud云计算旗下的Compshare的GPU算力云平台。他们提供高性价比的4090 GPU,按时收费每卡2.6元,月卡只需要1.7元每小时&…...

孙健提到的实验室的研究方向之一是什么?()

孙健提到的实验室的研究方向之一是什么?() 点击查看答案 A.虚拟现实B.环境感知和理解 C.智能体博弈D.所有选项都正确 图灵奖是在哪一年设立的?() A.1962B.1966 C.1976D.1986 孙健代表的实验室的前身主要研究什么?&…...

初级java每日一道面试题-2024年7月23日-Iterator和ListIterator有什么区别?

面试官: Iterator和ListIterator有什么区别? 我回答: Iterator和ListIterator都是Java集合框架中用于遍历集合元素的接口,但它们之间存在一些关键的区别,主要体现在功能和使用场景上。下面我将详细解释这两种迭代器的不同之处: 1. Iterat…...

2024-07-23 Unity AI行为树2 —— 项目介绍

文章目录 1 项目介绍2 AI 代码介绍2.1 BTBaseNode / BTControlNode2.2 动作/条件节点2.3 选择 / 顺序节点 3 怪物实现4 其他功能5 UML 类图 项目借鉴 B 站唐老狮 2023年直播内容。 点击前往唐老狮 B 站主页。 1 项目介绍 ​ 本项目使用 Unity 2022.3.32f1c1,实现基…...

Unity-URP-SSAO记录

勾选After Opacity Unity-URP管线,本来又一个“bug”, 网上查不到很多关于ssao的资料 以为会不会又是一个极度少人用的东西 而且几乎都是要第三方替代 也完全没有SSAO大概的消耗是多少,完全是黑盒(因为用的人少,研究的人少,优…...

无人机上磁航技术详解

磁航技术,也被称为地磁导航,是一种利用地球磁场信息来实现导航的技术。在无人机领域,磁航技术主要用于辅助惯性导航系统(INS)进行航向角的测量与校正,提高无人机的飞行稳定性和准确性。其技术原理是&#x…...

使用 cURL 命令测试网站响应时间

文章目录 使用 cURL 命令测试网站响应时间工具介绍cURL 命令详解命令参数说明输出格式说明示例运行结果总结使用 cURL 命令测试网站响应时间 本文将介绍如何使用 cURL 命令行工具来测试一个网站的响应时间。具体来说,我们将使用 cURL 命令来测量并显示各种网络性能指标,包括 …...

「网络通信」HTTP 协议

HTTP 🍉简介🍉抓包工具🍉报文结构🍌请求🍌响应🍌URL🥝URL encode 🍌方法🍌报文字段🥝Host🥝Content-Length & Content-Type🥝User…...

科普文:后端性能优化的实战小结

一、背景与效果 ICBU的核心沟通场景有了10年的“积累”,核心场景的界面响应耗时被拉的越来越长,也让性能优化工作提上了日程,先说结论,经过这一波前后端齐心协力的优化努力,两个核心界面90分位的数据,FCP平…...

LeetCode-day23-3098. 求出所有子序列的能量和

LeetCode-day23-3098. 求出所有子序列的能量和 题目描述示例示例1:示例2:示例3: 思路代码 题目描述 给你一个长度为 n 的整数数组 nums 和一个 正 整数 k 。 一个 子序列的 能量 定义为子序列中 任意 两个元素的差值绝对值的 最小值 。 请…...

CSS3雷达扫描效果

CSS3雷达扫描效果https://www.bootstrapmb.com/item/14840 要创建一个CSS3的雷达扫描效果,我们可以使用CSS的动画(keyframes)和transform属性。以下是一个简单的示例,展示了如何创建一个类似雷达扫描的动画效果: HTM…...

单例模式懒汉模式和饿汉模式

线程安全 单例模式在单线程中,当然是安全的。但是如果在多线程中,由于并行判断,可能会导致创建多个实例。那么如何保证在多线程中单例还是只有一个实例呢? 常见的三种方式: 局部静态变量 原理和饿汉模式相似,利用static只会初始…...

python __repr__和__str__区别

1. __repr__ __repr__ 方法由 repr() 内置函数调用,用于计算对象的“正式”字符串表示形式。理想情况下,这个字符串应该看起来像一个有效的 Python 表达式,可以在适当的环境下用来重新创建具有相同值的对象。如果这不可能实现,那…...

huawei USG6001v1学习----NAT和智能选路

目录 1.NAT的分类 2.智能选路 1.就近选路 2.策略路由 3.智能选路 NAT:(Network Address Translation,网络地址转换) 指网络地址转换,1994年提出的。NAT是用于在本地网络中使用私有地址,在连接互联网时转而使用全局…...

FPGA JTAG最小系统 EP2C5T144C8N

FPGA的文档没有相应的基础还真不容易看懂,下面是B站上对FPGA文档的解读(本文非对文档解读,只是为个人记录第三期:CycloneIV E最小系统板设计(一)从Datasheet上获取FPGA的基本参数_哔哩哔哩_bilibili 电源部份 核心电…...

Android 15 之如何快速适配 16K Page Size

在此之前,我们通过 《Android 15 上 16K Page Size 为什么是最坑》 介绍了: 什么是16K Page Size为什么它对于 Android 很坑如何测试 如果你还没了解,建议先去了解下前文,然后本篇主要是提供适配的思路,因为这类适配…...

学习unity官方的网络插件Netcode【一】

对bool值的个人理解: using Unity.Netcode; using UnityEngine; //个人理解:通过Rpc完成了一次客户端给服务端发消息,服务端再向所有客户端广播消息 public class RpcTest : NetworkBehaviour {public override void OnNetworkSpawn(){if (!…...

QT写一个mainWindow

切换风格的写法&#xff1a; 先看看样式效果&#xff1a; mian_window.h文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>class MainWindow : public QMainWindow {Q_OBJECTpublic:MainWindow(QWidget *parent nullptr);~MainWindow();void Ini…...

Java查找算法练习(2024.7.23)

顺序查找 package SearchExercise20240723; import java.util.Scanner; public class SearchExercise {public static void main(String[] args) {Scanner sc new Scanner(System.in);System.out.println("需要多大的数组?");int size sc.nextInt();int[] array …...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...