当前位置: 首页 > news >正文

【数据结构】二叉树链式结构——感受递归的暴力美学

前言:

        在上篇文章【数据结构】二叉树——顺序结构——堆及其实现中,实现了二叉树的顺序结构,使用堆来实现了二叉树这样一个数据结构;现在就来实现而二叉树的链式结构。

一、链式结构

        链式结构,使用链表来表示一颗二叉树,即用链来指示二叉树中元素的逻辑关系。通常的就是链表中每个节点右三个域组成,数据域左右指针域左右指针分别指向该节点的左孩子节点和右孩子节点的存储地址。

        链式结构分为二叉链和三叉链(三叉链比而二叉链多一个指向父节点的指针域)。

这里使用二叉链来实现。

二、二叉树链式结构实现相关功能

在实现之前,先来看一下,具体要实现哪些功能?

        首先就是二叉树的结构,我们使用链表来实现,链表的每一个节点都由数值域和左右指针域组成。

        二叉树链式结构的节点

typedef int TreeDataType;
typedef struct TreeNode
{TreeDataType data;struct TreeNode* left;struct TreeNode* right;
}TreeNode;

        二叉树链式结构如上,接下来再来看一下二叉树链式结构实现的相关功能:

//二叉树的前序排序
int PreOrder(TreeNode* root);
//二叉树的中序排序
int InOrder(TreeNode* root);
//二叉树的后序遍历
int AfterOrter(TreeNode* root);
//二叉树节点个数
int BinaryTreeSize(TreeNode* root);
//二叉树叶子节点个数
int BinaryTreeLeafSize(TreeNode* root);
//二叉树第k层节点个数
int BinaryTreeLevelKSize(TreeNode* root, int k);
//二叉树的深度
int BinaryTreeDepth(TreeNode* root);
//查找二叉树值为x的节点
TreeNode* BinaryTreeFind(TreeNode* root, TreeDataType x);
//层序遍历
void LevelOrder(BTNode* root)
//判断是否为满二叉树
bool BinaryTreeComplete(BTNode* root)
//二叉树的销毁
void TreeDesTroy(TreeNode** root);

        2.1、二叉树前、中、后序遍历

这里,前序、中序和后序遍历什么意思呢,

        说白了,这三种遍历其实就是以对二叉树访问的顺序,来遍历二叉树

这里以前序遍历为例,遍历二叉树

现在有一个这样的二叉树,用前序遍历来访问这颗二叉树(这里访问并输出访问到的数据)

        

首先访问根节点,输出访问到的数据 1 ;再访问左子树

再访问其左子树的根节点,输出访问到的数据  2 ;再接着访问左子树

再访问其左子树的根节点,输出访问到的数据 4 ;再接着访问左子树

此时访问到了空节点,就直接回退,回退到其父节点的函数栈帧,访问父节点的右子树

        访问4这个节点的右子树,也为空,此时节4这个点为根节点的左子树已经访问 结束了,回退到其父节点的函数栈帧,访问其父节点的右子树

        访问2这个节点的右子树,先输出右子树的根节点数据 5 ;再访问根节点5的左子树

        这里节点5的左右节点都为空,这里省略一些过程;此时5这个节点访问结束,回退到2这个节点,而2这个节点右子树访问结束,也已经访问结束了;此时再回退到根节点,访问根节点的右子树。

        此时访问根节点的右子树的根节点,输出访问到的数据 3 ;再接着访问3这个节点的左子树

        这里,3这个节点的左右节点都为空,访问就直接返回,回退到根节点,就说明根节点的右子树访问已经结束,此时二叉树已经变了结束。

        这里前序遍历的输出结果为 1 2 4 5 3

这三个前、中、后序遍历本质上没啥差别,这里直接看实现代码

//二叉树的前序排序
void PreOrder(TreeNode* root)
{if (root == NULL){return;}//输出数据printf("%d ", root->data);//遍历左子树PreOrder(root->left);//遍历右子树PreOrder(root->right);
}
//二叉树的中序排序
void InOrder(TreeNode* root)
{if (root == NULL){return;}//遍历左子树InOrder(root->left);//输出数据printf("%d ", root->data);//遍历右子树InOrder(root->right);
}
//二叉树的后序遍历
void AfterOrter(TreeNode* root)
{if (root == NULL){return;}//遍历左子树AfterOrter(root->left);//遍历右子树AfterOrter(root->right);//输出数据printf("%d ", root->data);
}

        这里我们来测试代码对不对,我们先创建一个二叉树,然后看输出结果是否正确、

TreeNode* BuyNode(TreeDataType x)
{TreeNode* newnode = (TreeNode*)malloc(sizeof(TreeNode));if (newnode == NULL){perror("malloc");exit(1);}newnode->data = x;newnode->left = newnode->right = NULL;return newnode;
}void test()
{TreeNode* node1 = BuyNode(1);TreeNode* node2 = BuyNode(2);TreeNode* node3 = BuyNode(3);TreeNode* node4 = BuyNode(4);TreeNode* node5 = BuyNode(5);node1->left = node2;node1->right = node3;node2->left = node4;node2->right = node5;//前序遍历PreOrder(node1);printf("\n");//中序遍历InOrder(node1);printf("\n");//后序遍历AfterOrter(node1);printf("\n");
}
int main()
{test();return 0;
}

这里代码没有问题。

        2.2、二叉树节点个数

        这里,二叉树的链式结构我们是使用递归来实现的,那我们该如何去计算二叉树的节点个数呢?

思路:
        遍历二叉树,遍历到空节点就返回0,不是空节点就返回其左子树和右子树节点个数之和再加一

代码如下:

//二叉树节点个数
int BinaryTreeSize(TreeNode* root)
{if (root == NULL){return 0;}return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

        2.3、二叉树叶子结点个数

        所谓叶子节点:就是左右子节点都为空的节点,我们就利用这个特点来判断

思路:

        遍历二叉树,遍历到空节点就返回空;遍历到节点的左右节点都为空,返回1;否则就返回节点的左子树和右子树的叶子结点之和。

代码如下:

//二叉树叶子节点个数
int BinaryTreeLeafSize(TreeNode* root)
{if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

        2.4、二叉树第k层节点个数

        求二叉树第k层节点的个数,我们先来看这样的一个图

        通过图我们可以看到,每次向下遍历一层,k-1;当k=1时,正好是第k层

思路:

        遍历二叉树,遍历到空节点就返回 0 ;遍历到k=1时,就返回1;否则就返回该节点左子树和右子树中第k - 1层的节点个数。

这里需要注意,要在判断k=1之前判断节点是否为空。

代码如下:

//二叉树第k层节点个数
int BinaryTreeLevelKSize(TreeNode* root, int k)
{if (root == NULL){return 0;}if (k == 1){return 1;}return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

        2.5、二叉树的深度

        求二叉树的深度,我们这里是将二叉树的左子树和右子树分开依次遍历的,显然我们不能像上面一样,返回遍历左子树和右子树的和;这里就返回其中最大的。

思路:

        遍历二叉树,遍历到空节点就返回空;定义两个值,记录其节点左子树和右子树的深度再加一;返回其中最大的即可。

理解:这里定义两个值记录其左右子树的深度加一(加一就是记录当前这一层)。

代码如下:

//二叉树的深度
int BinaryTreeDepth(TreeNode* root)
{if (root == NULL){return 0;}int depth_left = BinaryTreeDepth(root->left) + 1;int depth_right = BinaryTreeDepth(root->right) + 1;return (depth_left > depth_right) ? depth_left : depth_right;
}

        2.6、查找二叉树中值为 x 的节点

        查找相对来说就比较简单了,遍历二叉树,为空就返回NULL,值为x就返回该节点的地址,如果遍历过程中函数返回值不为NULL,就证明找到了,直接返回即可。

思路:

        遍历二叉树,遍历到空节点就返回NULL;判断节点的值是否为x,是就返回该节点的地址;不是。就创建指针变量接受其左右子树遍历的结果,如果不为NULL就直接返回该返回值。为空则继续遍历。

代码如下:

//查找二叉树值为x的节点
TreeNode* BinaryTreeFind(TreeNode* root, TreeDataType x)
{if (root == NULL){return NULL;}if (root->data == x){return root;}TreeNode* pleft = BinaryTreeFind(root->left, x);if (pleft)return pleft;TreeNode* pright = BinaryTreeFind(root->right, x);if (pright)return pright;return NULL;
}

到这里,来看一下这些代码是否正确

        对于这样的一个二叉树,代码输出结果都正确。

        2.7、层序遍历

这里层序遍历,我们需要借用队列这样一个数据结构(前面有详细讲解),

大致思路如此:

将根节点数据放入队列中;然后出队列,并且把该节点的左右子节点插入到队列当中。

将1这个节点出队列,再把左右子节点插入到队列当中

再出队头节点,将其左右子节点插入队列当中

依次类推,当队头数据左右子节点为空,就不进插入队列这一操作。

代码如下:

        这里用到了对列相关代码,详细代码在上篇

//层序遍历
//借助数据结构---队列
void LevelOrder(BTNode* root)
{Queue q;QueueInit(&q);QueuePush(&q, root);while (!QueueEmpty(&q)){//取队头,打印BTNode* front = QueueFront(&q);printf("%d ", front->data);QueuePop(&q);//队头节点的左右孩子入队列if (front->left)QueuePush(&q, front->left);if (front->right)QueuePush(&q, front->right);}//队列为空QueueDestroy(&q);
}

        2.8、判断二叉树是否为满二叉树

        判断二叉树是否为满二叉树,还是借用队列这样的数据结构,和层序遍历有相似之处;与层序遍历不同的是,这里,即便左右子节点为空,有进行入队列操作;当队头数据为空,就判断队列剩余数据是否都为空,如果都为空,就证明二叉树为满二叉树;否则就不是满二叉树。

代码如下:

//判断二叉树是否为完全二叉树
//---队列
bool BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front == NULL){break;}QueuePush(&q, front->left);QueuePush(&q, front->right);}//队列不一定为空while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front != NULL){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}

        2.9、二叉树的销毁

        这里为了测试这些代码,就手动创建了一个二叉树,这些都是动态开辟的空间,养成好习惯,手动释放动态开辟的空间。

这里需要注意的是:使用后序遍历,先是否底层的节点,

代码如下:

// 二叉树销毁
void BinaryTreeDesTroy(TreeNode** root)
{if (*root == NULL){return;}BinaryTreeDesTroy(&((*root)->left));BinaryTreeDesTroy(&((*root)->right));free(*root);*root = NULL;
}

感谢各位大佬支持并指出问题,

                        如果本篇内容对你有帮助,可以一键三连支持以下,感谢支持!!!

相关文章:

【数据结构】二叉树链式结构——感受递归的暴力美学

前言: 在上篇文章【数据结构】二叉树——顺序结构——堆及其实现中,实现了二叉树的顺序结构,使用堆来实现了二叉树这样一个数据结构;现在就来实现而二叉树的链式结构。 一、链式结构 链式结构,使用链表来表示一颗二叉树…...

开始尝试从0写一个项目--后端(三)

器材管理 和员工管理基本一致,就不赘述,展示代码为主 新增器材 表设计: 字段名 数据类型 说明 备注 id bigint 主键 自增 name varchar(32) 器材名字 img varchar(255) 图片 number BIGINT 器材数量 comment VARC…...

2024年7月解决Docker拉取镜像失败的实用方案,亲测有效

在Ubuntu 16.04、Debian 8、CentOS 7系统中,若遇到Docker拉取镜像失败的问题,以下是一些亲测有效的解决方案: 配置加速地址 首先,创建Docker配置目录:sudo mkdir -p /etc/docker然后,编辑daemon.json文件…...

基于内容的音乐推荐网站/基于ssm的音乐推荐系统/基于协同过滤推荐的音乐网站/基于vue的音乐平台

获取源码联系方式请查看文末🍅 摘 要 随着信息化时代的到来,系统管理都趋向于智能化、系统化,音乐推荐网站也不例外,但目前国内的有些公司仍然都使用人工管理,公司规模越来越大,同时信息量也越来越庞大&…...

STM32智能工业监控系统教程

目录 引言环境准备智能工业监控系统基础代码实现:实现智能工业监控系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:工业监控与优化问题解决方案与优化收尾与总结 1. 引言 智能工业监控系统通…...

WEB渗透Web突破篇-SQL注入(MYSQL)

注释符 # -- 注意这里有个空格 /* hello */ /*! hello */ /*!32302 10*/ MYSQL version 3.23.02联合查询 得到列数 order by或group by 不断增加数字,直到得到报错响应 1 ORDER BY 1-- #True 1 ORDER BY 2-- #True 1 ORDER BY 3-- #True 1 ORDER BY 4-- #Fal…...

PDF解锁网站

https://smallpdf.com/cn/unlock-pdfhttps://smallpdf.com/cn/unlock-pdfhttps://www.freemypdf.comhttps://www.freemypdf.com...

【Redis】主从复制分析-基础

1 主从节点运行数据的存储 在主从复制中, 对于主节点, 从节点就是自身的一个客户端, 所以和普通的客户端一样, 会被组织为一个 client 的结构体。 typedef struct client {// 省略 } client;同时无论是从节点, 还是主节点, 在运行中的数据都存放在一个 redisServer 的结构体中…...

Transformer自然语言处理实战pdf阅读

一.第一章 欢迎来到transformer的世界 1.解码器-编码器框架 在Transformer出现之前,NLP的最新技术是LSTM等循环架构。这些架 构通过在神经网络连接使用反馈循环,允许信息从一步传播到另一 步,使其成为对文本等序列数据进行建模的理想选择。如…...

Python 高阶语法

前言: 我们通过上篇文章学习了Python的基础语法,接下来我们来学习Python的高阶语法 1.初识对象 在Python中我们可以做到和生活中那样,设计表格、生产表格、填写表格的组织形式的 面向对象包含 3 大主要特性:  封装  继承 …...

开始尝试从0写一个项目--前端(三)

器材管理板块 添加器材管理导航 src\views\home\Home.vue src\router\index.js src\views\equipment\Equipment.vue <template><div>hello!</div></template> 测试 搜索导航分页查询 src\views\equipment\Equipment.vue <template><div&…...

Visual stdio code 运行C项目环境搭建

参考 [1]VS Code 配置 C/C 编程运行环境&#xff08;保姆级教程&#xff09;_visual studio code c配置-CSDN博客 [2]最新VS code配置C/C环境(tasks.json, launch.json,c_cpp_properties.json)及运行多个文件、配置Cmake_vscode launch.json如何配置-CSDN博客 先装visual stdi…...

免杀笔记 -->API的整理Shellcode加密(过DeFender)

最近更新频率明显下降我懒&#xff0c;那么今天就来记录一下我们的一些常用的API的整理以及ShellCode的加密。 1.WinAPI整理 问我为什么要整理&#xff1f; 就是用起来的时候要左翻右翻 &#xff1a;&#xff1a; 烦死了 1.VirtualAlloc VirtualAlloc(NULL,sizeof(buf),MEM_…...

Stable Diffusion 使用详解(3)---- ControlNet

背景 炼丹师在AI绘画的过程中&#xff0c;由于Stable Diffusion的原理是水滴式的扩散作图原理&#xff0c;其实在前面也有提到&#xff0c;他的发挥是‘不稳定’的&#xff0c;因为你没有办法做到精确控制&#xff0c;只能说是大致符合你的预期。你不能总依赖抽卡固定随机数种…...

pythonGame-实现简单的贪食蛇游戏

通过python简单复现贪食蛇游戏。 使用到的库函数&#xff1a; import pygame import time import random 游戏源码&#xff1a; import pygame import time import randompygame.init()white (255, 255, 255) yellow (255, 255, 102) black (0, 0, 0) red (213, 50, 80…...

2024年软件系统与信息处理国际会议(ICSSIP 2024)即将召开!

2024年软件系统与信息处理国际会议&#xff08;ICSSIP 2024&#xff09;将于2024年10月25-27日在中国昆明举行。引领技术前沿&#xff0c;共谋创新未来。ICSSIP 2024将汇聚来自世界各地的专家学者&#xff0c;他们将在会上分享最新的研究成果、技术突破及实践经验。会议议题涵盖…...

使用vscode连接开发机进行python debug

什么是debug&#xff1f; 当你刚开始学习Python编程时&#xff0c;可能会遇到代码不按预期运行的情况。这时&#xff0c;你就需要用到“debug”了。简单来说&#xff0c;“debug”就是能再程序中设置中断点并支持一行一行地运行代码&#xff0c;观测程序中变量的变化&#xff…...

(家用)汽车充电桩项目总结分析

1. 项目选题背景 &#xff08;1&#xff09;社招&#xff1a;公司想做这个方向&#xff0c;先让学习测试一下&#xff0c;而且不做Web或者APP&#xff0c;以某一个模块或者某一个部分为主 &#xff08;2&#xff09;非社招&#xff1a;之前在学校做的一个学习的项目 2. 充电…...

JMeter接口测试:测试中奖概率!

介绍 Apache JMeter 是 Apache 组织基于 Java 开发的压力测试工具&#xff0c;用于对软件做压力测试。JMeter 最初被设计用于 Web 应用测试&#xff0c;但后来扩展到了其他测试领域&#xff0c;可用于测试静态和动态资源&#xff0c;如静态文件、Java 小服务程序、CGI 脚本、J…...

生成式人工智能之路,从马尔可夫链到生成对抗网络

人工智能&#xff08;Artificial intelligence&#xff0c;AI&#xff09;技术在过去几年中取得了显著进展&#xff0c;其中生成式AI&#xff08;Generative AI&#xff09;因其强大的内容生成能力而备受关注。生成式AI可以创建新的文本、图像、音频、视频、代码以及其他形式的…...

qt做的分页控件

介绍 qt做的分页控件 如何使用 创建 Pagination必须基于一个QWidget创建&#xff0c;否则会引发错误。 Pagination* pa new Pagination(QWidget*);设置总页数 Pagination需要设置一个总的页数&#xff0c;来初始化页码。 pa->SetTotalItem(count);设置可选的每页数量…...

MySQL with recursive 用法浅析

目录 写在前面 语句功能 with recursive 语法讲解 细节补充 “union all”语句 添加递归终止条件 写在前面 介绍“with recursive”用法的文章不少&#xff0c;但我都觉得讲的不够通俗&#xff0c;所以干脆自己写一篇。话不多说&#xff0c;进入正题。 语句功能 with r…...

ROS2常用命令集合

文章目录 指令帮助创建功能包功能包查找编译执行节点查看话题服务命令接口命令动作命令参数命令录制控制命令 指令帮助 ros2 --help # 帮助查看命令创建功能包 ros2 pkg create 包名 --build-type 构建类型 --dependencies 依赖列表 --node-name 可执行程序名称功能包查找 …...

VUE 子组件可以直接改变父组件的数据吗

子组件不可以直接改变父组件的数据。‌在Vue中&#xff0c;‌数据流是单向的&#xff0c;‌即父组件通过props向子组件传递数据&#xff0c;‌而子组件不能直接修改父组件的数据。‌这是为了维护数据流动的单向性和数据的可维护性。‌ 如果子组件需要修改父组件的数据&#xf…...

Redis 持久化详解

AOF 持久化 AOF持久化数据恢复相对RDB慢&#xff0c;文件也更大&#xff0c;但数据丢失的风险更小。 AOF 写入 将数据写入Redis内存后&#xff0c;将写数据的命令记录到AOP磁盘文件。 【结构】server.aof_buf 主线程写操作执行完之后&#xff0c;命令会先追加到 Redis 的 se…...

基于riscv64架构的Dayu800开发板的napi_demo开发介绍

itopen组织1、提供OpenHarmony优雅实用的小工具2、手把手适配riscv qemu linux的三方库移植3、未来计划riscv qemu ohos的三方库移植 小程序开发4、一切拥抱开源&#xff0c;拥抱国产化 一、环境准备工作 1.1 Ubuntu20.04环境配置 如果已经配置OpenHarmony的编译环境则…...

HAL STM32 SPI/ABZ/PWM方式读取MT6816磁编码器数据

HAL STM32 SPI/ABZ/PWM方式读取MT6816磁编码器数据 &#x1f4da;MT6816相关资料&#xff08;来自商家的相关资料&#xff09;&#xff1a; 资料&#xff1a;https://pan.baidu.com/s/1CAbdLBRi2dmL4D7cFve1XA?pwd8888 提取码&#xff1a;8888&#x1f4cd;驱动代码编写&…...

HarmonyOS应用开发者高级认证,Next版本发布后最新题库 - 多选题序号5

基础认证题库请移步&#xff1a;HarmonyOS应用开发者基础认证题库 注&#xff1a;有读者反馈&#xff0c;题库的代码块比较多&#xff0c;打开文章时会卡死。所以笔者将题库拆分&#xff0c;单选题20个为一组&#xff0c;多选题10个为一组&#xff0c;题库目录如下&#xff0c;…...

Tekion 选择 ClickHouse Cloud 提升应用性能和指标监控

本文字数&#xff1a;4187&#xff1b;估计阅读时间&#xff1a;11 分钟 作者&#xff1a;ClickHouse team 本文在公众号【ClickHouseInc】首发 Tekion 由前 Tesla CIO Jay Vijayan 于 2016 年创立&#xff0c;利用大数据、人工智能和物联网等技术&#xff0c;为其汽车客户解决…...

mysql之触发器的使用

cr一&#xff1a;创建goods表和orders表&#xff1b; mysql> use mydb16_tirgeer Database changed mysql> create table goods(-> gid char(8) primary key,-> name varchar(10),-> price decimal(8,2),->-> num int); Query OK, 0 rows affected (0.0…...

使用Java和Hazelcast实现分布式数据存储

使用Java和Hazelcast实现分布式数据存储 大家好&#xff0c;我是微赚淘客系统3.0的小编&#xff0c;是个冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 在分布式系统中&#xff0c;实现高效的数据存储和管理是非常重要的。Hazelcast作为一个内存数据网格(IMDG)&…...

Hi3751V560_SELinux

Hi3751V560_SELinux setenforce Enforcing setenforce Permissive(或“setenforce 0”) getenforce V560:demo本身的: [ 13.765161] type=1400 audit(1628821512.905:4): avc: denied { read } for pid=1926 comm="system_server" name="ifindex" d…...

邮件安全篇:邮件反垃圾系统运作机制简介

1. 什么是邮件反垃圾系统&#xff1f; 邮件反垃圾系统是一种专门设计用于检测、过滤和阻止垃圾邮件的技术解决方案。用于保护用户的邮箱免受未经请求的商业广告、诈骗信息、恶意软件、钓鱼攻击和其他非用户意愿接收的电子邮件的侵扰。 反垃圾系统的常见部署形式 2. 邮件反垃圾…...

LoRaWAN设备的两种入网方式(ABP和OTAA)

目录 一、OTAA 1、名词解释 2、入网流程 二、ABP 三、两种入网方式的比较 一、OTAA 1、名词解释 &#xff08;1&#xff09;AppEUI&#xff1a;64位&#xff08;8字节&#xff09;的唯一标识符&#xff0c;用于标识特定的应用程序或组织&#xff08;如果用的是chirpstac…...

【Rust光年纪】极致性能与灵活选择:Rust语言数学优化库详解

Rust语言中的数学优化&#xff1a;六大利器汇总 前言 在当今信息时代&#xff0c;数据处理和数学优化成为了各行各业中不可或缺的重要环节。为了满足对高效、快速计算的需求&#xff0c;Rust语言逐渐成为了许多开发者的首选&#xff0c;因其性能优越、并发安全等特点。本文将…...

机器学习 | 回归算法原理——最小二乘法

Hi&#xff0c;大家好&#xff0c;我是半亩花海。很早便想学习并总结一本很喜欢的机器学习图书——立石贤吾的《白话机器学习的数学》&#xff0c;可谓通俗易懂&#xff0c;清晰形象。那就在此分享并作为学习笔记来记录我的学习过程吧&#xff01;本章的回归算法原理基于《基于…...

.NET Core 中的字符串压缩方法

字符串压缩的概念 字符串压缩通常指的是通过算法减少字符串表示所需的数据量&#xff0c;同时保持字符串的原始信息或能够无损地恢复原始字符串。这种压缩可以是针对文本数据的特定算法&#xff0c;也可以是更通用的数据压缩算法。 .NET Core 中的字符串压缩方法 使用数据压…...

SQL 基础知识

SQL&#xff08;结构化查询语言&#xff09;是一种用于管理和操作关系数据库的标准编程语言。以下是一些 SQL 的基础知识&#xff1a; 基本概念 数据库&#xff08;Database&#xff09;&#xff1a; 存储和管理数据的容器。一个数据库可以包含多个表。 表&#xff08;Table&…...

【数据结构初阶】单链表经典算法题十二道——得道飞升(上篇)

目录 1、移除元素 2、反转链表 3、链表的中间节点 4、合并两个有序链表 Relaxing Time&#xff01;&#xff01;&#xff01; ———————————————— 天气之子幻 ———————————————— 1、移除元素 思路&#xff1a; 创建一个新链表&#xff0…...

Python爬虫技术 第16节 XPath

XPath是一种在XML文档中查找信息的语言&#xff0c;尽管XML和HTML在语法上有区别&#xff0c;但XPath同样适用于HTML文档的解析&#xff0c;尤其是在使用如lxml这样的库时。XPath提供了一种强大的方法来定位和提取XML/HTML文档中的元素和属性。 XPath基础 XPath表达式由路径表…...

本地部署,Whisper: 开源语音识别模型

目录 简介 特点 应用 使用方法 总结 GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak SupervisionRobust Speech Recognition via Large-Scale Weak Supervision - openai/whisperhttps://github.com/openai/whisper 简介 Whisper 是一个由 O…...

history,hash缓存那些事

vue-router 中的 createWebHistory&#xff0c;createWebHashHistory两种模式 createWebHistory 是基于 window.history 对象是HTML5提供的用于维护当前标签页浏览历史的对象&#xff0c;主要功能是前进后退和在不刷新页面的情况下&#xff0c;修改地址栏里的URL地址。histor…...

Spring Boot的Web开发

目录 Spring Boot的Web开发 1.静态资源映射规则 第一种静态资源映射规则 2.enjoy模板引擎 3.springMVC 3.1请求处理 RequestMapping DeleteMapping 删除 PutMapping 修改 GetMapping 查询 PostMapping 新增 3.2参数绑定 一.支持数据类型: 3.3常用注解 一.Request…...

Spark 解析嵌套的 JSON 文件

1、什么是嵌套的JSON文件&#xff1f; 嵌套的JSON文件是指文件中包含了嵌套的JSON对象或数组。例如&#xff0c;以下是一个嵌套的JSON文件的示例&#xff1a; {"name": "John","age": 30,"address": {"street": "123…...

VMware虚拟机中CentOS7自定义ip地址并且固定ip

配置固定ip(虚拟机) 前提&#xff1a;虚拟机网络配置成&#xff0c;自定义网络并选择VMnet8(NAT 模式) 操作(如下图)&#xff1a;点击虚拟机–》设置–》–》硬件–》网络适配器–》自定义&#xff1a;特定虚拟网络–》选择&#xff1a;VMnet8(NAT 模式) 虚拟机网络设置 需要记…...

CCS(Code Composer Studio 10.4.0)编译软件中文乱码怎么解决

如果是所有文件都出现了中文乱码这时建议直接在窗口首选项中修改&#xff1a;选择"Window" -> "Preferences"&#xff0c;找到"General" -> "Workspace"&#xff0c;将"Text file encoding"选项设置为"Other&quo…...

Flutter 3 完全支持网页端

Flutter 3 可以用于开发网页端应用。自 Flutter 2.0 起&#xff0c;Flutter 就已经支持 Web 平台&#xff0c;并且在 Flutter 3 中得到了进一步的改进和优化。以下是使用 Flutter 3 开发网页端的一些优势和特点&#xff1a; Flutter 3 开发网页端的优势&#xff1a; 跨平台一致…...

vue.js入门

目录 一. 框架概述 二. vue常用命令 2.1 插值表达式 2.2 v-text 2.3 v-html 2.4 v-on 2.5 v-model 2.6 v-show 2.7 v-if 2.8 v-else 2.9 v-bind 2.10 v-for 三. vue生命周期函数 目录 一. 框架概述 二. vue常用命令 2.1 插值表达式 2.2 v-text 2.3 v-html 2…...

API签名认证

前言&#xff08;项目背景&#xff09;&#xff1a; 这个API签名认证是API开放平台得一个重要环节&#xff0c;我们知道&#xff0c;这个API开发平台&#xff0c;用处就是给客户去调用现成得接口来完成某些事情得。 在讲API签名认证之前&#xff0c;我们先模拟一个场景并且介绍…...

C#进阶-基于.NET Framework 4.x框架实现ASP.NET WebForms项目IP拦截器

在这篇文章中&#xff0c;我们将探讨如何在 ASP.NET WebForms 中实现IP拦截器&#xff0c;以便在 ASMX Web 服务方法 和 HTTP 请求 中根据IP地址进行访问控制。我们将使用自定义的 SoapExtension 和 IHttpModule 来实现这一功能&#xff0c;并根据常用的两种文本传输协议&#…...