当前位置: 首页 > news >正文

PCIe总线-Linux内核PCIe软件框架分析(十一)

1.简介

Linux内核PCIe软件框架如下图所示,按照PCIe的模式,可分为RC和EP软件框架。RC的软件框架分为五层,第一层为RC Controller Driver,和RC Controller硬件直接交互,不同的RC Controller,其驱动实现也不相同;第二层为Core层,该层将Controller进行了抽象,提供了统一的接口和数据结构,将所有的Controller管理起来,同时提供通用PCIe设备驱动注册和匹配接口,完成驱动和设备的绑定,管理所有PCIe设备;第三层为PCIe设备驱动层,包含了Storage、Ethernet、PCI桥等设备驱动;第四层为设备驱动层,根据设备类型,可分为字符设备驱动、网络设备驱动和块设备驱动。第五层为虚拟文件系统层,该层会在用户空间创建设备节点,提供了应用程序访问PCIe设备的路径。EP的软件框架分为六层,第一层为EP Controller Driver,和RC Controller Driver的功能相似;第二层为EP Controller Core层,该层向下将EP Controller进行了抽象,提供了统一的接口和数据结构,将所有的EP Controller管理起来;第三层为EP Function Core,该层统一管理EPF驱动和EPF设备,并提供两者相互匹配的方法;第四层为EP Configfs,在用户空间提供了配置和绑定EPF的接口,用户可以通过这些接口配置EPF,而无需修改驱动;第五层为EP Function Driver,和PCIe设备的具体功能相关;第六层为虚拟文件系统层,和RC的功能相同(EP也有设备驱动层,篇幅所限,图中未画出)。

PCIe软件框架

2.RC软件框架

2.1.RC Controller Driver

RK3588 PCIe RC Controller Driver驱动定义如下所示。

MODULE_DEVICE_TABLE(of, rk_pcie_of_match);
static struct platform_driver rk_plat_pcie_driver = {.driver = {.name	= "rk-pcie",.of_match_table = rk_pcie_of_match,.suppress_bind_attrs = true,.pm = &rockchip_dw_pcie_pm_ops,},.probe = rk_pcie_probe,
};module_platform_driver(rk_plat_pcie_driver);

2.2.Core

2.2.1.Host Bridge

RC Core层使用struct pci_host_bridge数据结构描述Host Bridge。bus描述Root bus,其他bus都在该数据结构的链表中。opschild_ops描述Root bus和其他bus上的设备的配置空间访问方法。windows链表保存bus-range和ranges的资源。dma_ranges链表保存dma-ranges的资源。使用pci_alloc_host_bridgedevm_pci_alloc_host_bridge函数分配struct pci_host_bridge数据结构,使用pci_free_host_bridge释放struct pci_host_bridge数据结构。pci_host_probe枚举Host Bridge下面所有PCIe设备。

[include/linux/pci.h]
struct pci_host_bridge {struct device	dev;struct pci_bus	*bus;		/* Root bus */struct pci_ops	*ops;       /* Low-level architecture-dependent routines */struct pci_ops	*child_ops;void		*sysdata;int		busnr;struct list_head windows;	 /* resource_entry */struct list_head dma_ranges; /* dma ranges resource list */......
};
struct pci_host_bridge *pci_alloc_host_bridge(size_t priv);
struct pci_host_bridge *devm_pci_alloc_host_bridge(struct device *dev,size_t priv);
void pci_free_host_bridge(struct pci_host_bridge *bridge);
int pci_host_probe(struct pci_host_bridge *bridge);

struct pci_ops描述访问PCIe设备配置空间的方法,需要RC Controller Driver实现。常用的是map_busreadwritemap_bus用于映射访问配置空间的region,readwrite用于读写配置空间。

[include/linux/pci.h]
struct pci_ops {int (*add_bus)(struct pci_bus *bus);void (*remove_bus)(struct pci_bus *bus);void __iomem *(*map_bus)(struct pci_bus *bus, unsigned int devfn, int where);int (*read)(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val);int (*write)(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val);
};
2.2.2.Bus

RC Core层使用struct pci_bus数据结构描述PCIe bus。所有PCIe bus组成一个PCIe树型结构。parent指向Parent buses,children指向Child buses。devices链表保存该bus上的所有设备。number为该bus的总线编号,primary表示上游总线编号,busn_res保存桥下游总线编号范围,max_bus_speed表示该bus支持的最大速度,cur_bus_speed表示该bus当前的速度。pci_find_bus根据PCIe域和总线编号查找struct pci_buspci_add_new_bus创建一个struct pci_bus并添加到父总线上,注册Host Bridge时会自动创建bus0的数据结构,pci_bus_insert_busn_respci_bus_update_busn_res_end更新PCIe bus编号资源。

[include/linux/pci.h]
struct pci_bus {struct list_head node;		/* Node in list of buses */struct pci_bus	*parent;	/* Parent bus this bridge is on */struct list_head children;	/* List of child buses */struct list_head devices;	/* List of devices on this bus */struct pci_dev	*self;		/* Bridge device as seen by parent */struct list_head slots;		/* List of slots on this bus;protected by pci_slot_mutex */struct resource *resource[PCI_BRIDGE_RESOURCE_NUM];struct list_head resources;	/* Address space routed to this bus */struct resource busn_res;	/* Bus numbers routed to this bus */struct pci_ops	*ops;		/* Configuration access functions */struct msi_controller *msi;	/* MSI controller */void		*sysdata;	/* Hook for sys-specific extension */struct proc_dir_entry *procdir;	/* Directory entry in /proc/bus/pci */unsigned char	number;		/* Bus number */unsigned char	primary;	/* Number of primary bridge */unsigned char	max_bus_speed;	/* enum pci_bus_speed */unsigned char	cur_bus_speed;	/* enum pci_bus_speed */......
};struct pci_bus *pci_find_bus(int domain, int busnr);
struct pci_bus *pci_add_new_bus(struct pci_bus *parent,struct pci_dev *dev, int busnr);
void pci_remove_bus(struct pci_bus *bus);int pci_bus_insert_busn_res(struct pci_bus *b, int bus, int busmax);
int pci_bus_update_busn_res_end(struct pci_bus *b, int busmax);
2.2.3.Device

RC Core层使用struct pci_dev数据结构描述PCIe Devices。devfn表述device和function编号,vendordevice等保存PCIe设备配置空间头信息,driver指向该设备使用的驱动。resource保存设备的资源,如BAR、ROMs等。PCIe bus也是一个PCIe设备。pci_alloc_dev分配struct pci_dev数据结构,pci_dev_put释放struct pci_dev数据结构,pci_device_add向总线上添加PCIe设备。pci_bus_add_devicespci_bus_add_device匹配PCIe设备和PCIe驱动。

[include/linux/pci.h]
/* The pci_dev structure describes PCI devices */
struct pci_dev {struct list_head bus_list;	/* Node in per-bus list */struct pci_bus	*bus;		/* Bus this device is on */struct pci_bus	*subordinate;	/* Bus this device bridges to */void		*sysdata;	/* Hook for sys-specific extension */struct proc_dir_entry *procent;	/* Device entry in /proc/bus/pci */struct pci_slot	*slot;		/* Physical slot this device is in */unsigned int	devfn;		/* Encoded device & function index */unsigned short	vendor;unsigned short	device;unsigned short	subsystem_vendor;unsigned short	subsystem_device;unsigned int	class;		/* 3 bytes: (base,sub,prog-if) */......struct pci_driver *driver;	/* Driver bound to this device */......int		cfg_size;		/* Size of config space *//** Instead of touching interrupt line and base address registers* directly, use the values stored here. They might be different!*/unsigned int	irq;struct resource resource[DEVICE_COUNT_RESOURCE]; /* I/O and memory regions + expansion ROMs */bool		match_driver;		/* Skip attaching driver */......
};struct pci_dev *pci_alloc_dev(struct pci_bus *bus);
void pci_dev_put(struct pci_dev *dev);
void pci_device_add(struct pci_dev *dev, struct pci_bus *bus);
void pci_bus_add_device(struct pci_dev *dev);
void pci_bus_add_devices(const struct pci_bus *bus);
2.2.4.Driver

RC Core层使用struct pci_driver数据结构描述PCIe设备驱动。PCIe设备和驱动匹配的信息保存到id_table中。pci_register_driver注册PCIe设备驱动,pci_unregister_driver注销PCIe设备驱动。

[include/linux/pci.h]
struct pci_driver {struct list_head	node;const char		*name;/* Must be non-NULL for probe to be called */const struct pci_device_id *id_table;/* New device inserted */int  (*probe)(struct pci_dev *dev, const struct pci_device_id *id);/* Device removed (NULL if not a hot-plug capable driver) */void (*remove)(struct pci_dev *dev);/* Device suspended */int  (*suspend)(struct pci_dev *dev, pm_message_t state);/* Device woken up */int  (*resume)(struct pci_dev *dev);void (*shutdown)(struct pci_dev *dev);/* On PF */int  (*sriov_configure)(struct pci_dev *dev, int num_vfs);/*  */const struct pci_error_handlers *err_handler;......
};
/* pci_register_driver() must be a macro so KBUILD_MODNAME can be expanded */
#define pci_register_driver(driver)		\__pci_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)void pci_unregister_driver(struct pci_driver *dev);

pci_bus_type用于匹配PCIe设备和驱动。

struct bus_type pci_bus_type = {.name		= "pci",.match		= pci_bus_match,.uevent		= pci_uevent,.probe		= pci_device_probe,.remove		= pci_device_remove,.shutdown	= pci_device_shutdown,.dev_groups	= pci_dev_groups,.bus_groups	= pci_bus_groups,.drv_groups	= pci_drv_groups,.pm		= PCI_PM_OPS_PTR,.num_vf		= pci_bus_num_vf,.dma_configure	= pci_dma_configure,
};
2.2.5.设备驱动

不同的PCIe设备,需要不同的PCIe设备驱动。下面列出PCIe桥和NVMe硬盘驱动。

2.2.5.1.桥驱动

如下所示,PCIe桥使用"pcieport"驱动。

[drivers/pci/pcie/portdrv_pci.c]
static const struct pci_device_id port_pci_ids[] = {/* handle any PCI-Express port */{ PCI_DEVICE_CLASS(((PCI_CLASS_BRIDGE_PCI << 8) | 0x00), ~0) },/* subtractive decode PCI-to-PCI bridge, class type is 060401h */{ PCI_DEVICE_CLASS(((PCI_CLASS_BRIDGE_PCI << 8) | 0x01), ~0) },/* handle any Root Complex Event Collector */{ PCI_DEVICE_CLASS(((PCI_CLASS_SYSTEM_RCEC << 8) | 0x00), ~0) },{ },
};
static struct pci_driver pcie_portdriver = {.name		= "pcieport",.id_table	= &port_pci_ids[0],.probe		= pcie_portdrv_probe,.remove		= pcie_portdrv_remove,.shutdown	= pcie_portdrv_remove,.err_handler	= &pcie_portdrv_err_handler,.driver.pm	= PCIE_PORTDRV_PM_OPS,
};
static int __init pcie_portdrv_init(void)
{if (pcie_ports_disabled)return -EACCES;pcie_init_services();dmi_check_system(pcie_portdrv_dmi_table);return pci_register_driver(&pcie_portdriver);
}
device_initcall(pcie_portdrv_init);
2.2.5.2.NVMe驱动

M.2 NVMe硬盘使用下面的驱动。

[drivers/nvme/host/pci.c]
static struct pci_driver nvme_driver = {.name		= "nvme",.id_table	= nvme_id_table,.probe		= nvme_probe,.remove		= nvme_remove,.shutdown	= nvme_shutdown,
#ifdef CONFIG_PM_SLEEP.driver		= {.pm	= &nvme_dev_pm_ops,},
#endif.sriov_configure = pci_sriov_configure_simple,.err_handler	= &nvme_err_handler,
};static int __init nvme_init(void)
{BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);return pci_register_driver(&nvme_driver);
}
module_init(nvme_init);
module_exit(nvme_exit);

3.EP软件框架

3.1.EP Controller Driver

RK3399 PCIe EP Controller Driverr驱动定义如下所示。

[drivers/pci/controller/pcie-rockchip-ep.c]
static const struct of_device_id rockchip_pcie_ep_of_match[] = {{ .compatible = "rockchip,rk3399-pcie-ep"},{},
};static struct platform_driver rockchip_pcie_ep_driver = {.driver = {.name = "rockchip-pcie-ep",.of_match_table = rockchip_pcie_ep_of_match,},.probe = rockchip_pcie_ep_probe,
};builtin_platform_driver(rockchip_pcie_ep_driver);

3.2.EP Controller Core

3.2.1.EPC Device

EP Controller Core层使用struct pci_epc描述PCIe Endpoint Controller Device。EPC的所有的functions都挂到pci_epf链表上,ops指向了EPC提供的回调函数集合,用于设置EPC的配置空间、设置region、设置和发送中断等,windows保存了EPC的Outbound的地址段,num_windows表示Outbound的地址段的数量,max_functions保存了functions的最大数量。使用pci_epc_createdevm_pci_epc_create函数创建struct pci_epcdevm_pci_epc_destroypci_epc_destroy销毁struct pci_epc

[include/linux/pci-epc.h]
/* struct pci_epc - represents the PCI EPC device */
struct pci_epc {struct device			dev;struct list_head		pci_epf;const struct pci_epc_ops	*ops;struct pci_epc_mem		**windows;struct pci_epc_mem		*mem;unsigned int			num_windows;u8				max_functions;struct config_group		*group;/* mutex to protect against concurrent access of EP controller */struct mutex			lock;unsigned long			function_num_map;struct atomic_notifier_head	notifier;
};#define pci_epc_create(dev, ops)    \__pci_epc_create((dev), (ops), THIS_MODULE)
#define devm_pci_epc_create(dev, ops)    \__devm_pci_epc_create((dev), (ops), THIS_MODULE)
void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc);
void pci_epc_destroy(struct pci_epc *epc);

struct pci_epc_ops如下图所示,这些回调函数很重要,EP Controller Driver必须实现。EPF驱动会调用这些函数配置EPC。

[include/linux/pci-epc.h]
struct pci_epc_ops {int	(*write_header)(struct pci_epc *epc, u8 func_no,struct pci_epf_header *hdr);int	(*set_bar)(struct pci_epc *epc, u8 func_no,struct pci_epf_bar *epf_bar);void	(*clear_bar)(struct pci_epc *epc, u8 func_no,struct pci_epf_bar *epf_bar);int	(*map_addr)(struct pci_epc *epc, u8 func_no,phys_addr_t addr, u64 pci_addr, size_t size);void	(*unmap_addr)(struct pci_epc *epc, u8 func_no,phys_addr_t addr);int	(*set_msi)(struct pci_epc *epc, u8 func_no, u8 interrupts);int	(*get_msi)(struct pci_epc *epc, u8 func_no);int	(*set_msix)(struct pci_epc *epc, u8 func_no, u16 interrupts,enum pci_barno, u32 offset);int	(*get_msix)(struct pci_epc *epc, u8 func_no);int	(*raise_irq)(struct pci_epc *epc, u8 func_no,enum pci_epc_irq_type type, u16 interrupt_num);int	(*start)(struct pci_epc *epc);void	(*stop)(struct pci_epc *epc);const struct pci_epc_features* (*get_features)(struct pci_epc *epc,u8 func_no);struct module *owner;
};
3.2.2.EPF绑定EPC

每个EP的Function都对应一个struct pci_epf设备,即EPF设备,EPF设备和EPC通过pci_epc_add_epf绑定,通过pci_epc_remove_epf解除绑定。

[include/linux/pci-epc.h]
int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf);
void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf);
3.2.3.EPC API

下面的接口是对struct pci_epc_ops封装,供EPF驱动调用。

[include/linux/pci-epc.h]
int pci_epc_write_header(struct pci_epc *epc, u8 func_no,struct pci_epf_header *hdr);
int pci_epc_set_bar(struct pci_epc *epc, u8 func_no,struct pci_epf_bar *epf_bar);
void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no,struct pci_epf_bar *epf_bar);
int pci_epc_map_addr(struct pci_epc *epc, u8 func_no,phys_addr_t phys_addr,u64 pci_addr, size_t size);
void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no,phys_addr_t phys_addr);
int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 interrupts);
int pci_epc_get_msi(struct pci_epc *epc, u8 func_no);
int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u16 interrupts,enum pci_barno, u32 offset);
int pci_epc_get_msix(struct pci_epc *epc, u8 func_no);
int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no,enum pci_epc_irq_type type, u16 interrupt_num);
int pci_epc_start(struct pci_epc *epc);
void pci_epc_stop(struct pci_epc *epc);
const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,u8 func_no);

3.3.EP Function Core

EP Function Core层定义了EPF Driver和EPF Device的数据结构,并提供注册、创建及绑定接口。

3.3.1.EPF Driver

EPF Driver的数据结构为struct pci_epf_driver。当EPF Device和EPC Device绑定后,会回调ops函数以通知EPF Driver,id_table定义EPF Driver和EPF Device匹配的信息。pci_epf_register_driver注册EPF Driver,pci_epf_unregister_driver注销EPF Driver。

[include/linux/pci-epf.h]
struct pci_epf_driver {int	(*probe)(struct pci_epf *epf);int	(*remove)(struct pci_epf *epf);struct device_driver	driver;struct pci_epf_ops	*ops;struct module		*owner;struct list_head	epf_group;const struct pci_epf_device_id	*id_table;
};
struct pci_epf_ops {int	(*bind)(struct pci_epf *epf);void	(*unbind)(struct pci_epf *epf);
};#define pci_epf_register_driver(driver)    \__pci_epf_register_driver((driver), THIS_MODULE)
void pci_epf_unregister_driver(struct pci_epf_driver *driver);
3.3.2.EPF Device

每个EP Function都对应一个EPF Device。EPF Device的数据结构为struct pci_epf_driverheader保存了该EP Function配置空间头信息,bar[6]保存了6个BAR映射的物理地址,msi_interruptsmsix_interrupts分别表示EP Function需要的中断数量,func_no表述EP Function的编号。pci_epf_createpci_epf_destroy创建和销毁EPF Device。

[include/linux/pci-epf.h]
struct pci_epf {struct device		dev;const char		*name;struct pci_epf_header	*header;struct pci_epf_bar	bar[6];u8			msi_interrupts;u16			msix_interrupts;u8			func_no;struct pci_epc		*epc;struct pci_epf_driver	*driver;struct list_head	list;struct notifier_block   nb;/* mutex to protect against concurrent access of pci_epf_ops */struct mutex		lock;
};
struct pci_epf *pci_epf_create(const char *name);
void pci_epf_destroy(struct pci_epf *epf);
3.3.3.EPF Device匹配EPF Driver

pci_epf_bus_type用于匹配EPF Device和EPF Driver。

[drivers/pci/endpoint/pci-epf-core.c]
static struct bus_type pci_epf_bus_type = {.name		= "pci-epf",.match		= pci_epf_device_match,.probe		= pci_epf_device_probe,.remove		= pci_epf_device_remove,
};

3.4.EP Configfs

EP Configfs会在/sys目录下创建文件节点,使用者可以在用户空间通过这些文件节点,配置和创建EPP Device,绑定EPP Device、EPP Driver及EPC Device。

3.5.EP Function Driver。

下面是pci_epf_test的EP Function Driver。

[drivers/pci/endpoint/functions/pci-epf-test.c]
static struct pci_epf_ops ops = {.unbind	= pci_epf_test_unbind,.bind	= pci_epf_test_bind,
};static struct pci_epf_driver test_driver = {.driver.name	= "pci_epf_test",.probe		= pci_epf_test_probe,.id_table	= pci_epf_test_ids,.ops		= &ops,.owner		= THIS_MODULE,
};

参考资料

  1. PCIEXPRESS体系结构导读
  2. PCI Express technology 3.0
  3. PCI Express® Base Specification Revision 5.0 Version 1.0
  4. Rockchip RK3588 TRM
  5. Linux kernel 5.10

相关文章:

PCIe总线-Linux内核PCIe软件框架分析(十一)

1.简介 Linux内核PCIe软件框架如下图所示&#xff0c;按照PCIe的模式&#xff0c;可分为RC和EP软件框架。RC的软件框架分为五层&#xff0c;第一层为RC Controller Driver&#xff0c;和RC Controller硬件直接交互&#xff0c;不同的RC Controller&#xff0c;其驱动实现也不相…...

视觉SLAM第二讲

SLAM分为定位和建图两个问题。 定位问题 定位问题是通过传感器观测数据直接或间接求解位置和姿态。 通常可以分为两类&#xff1a;基于已知地图的定位和基于未知地图的定位。 基于已知地图的定位 利用预先构建的地图&#xff0c;结合传感器数据进行全局定位。SLAM中的全局…...

mysql1055报错解决方法

目录 一、mysql版本 二、 问题描述 三、解决方法 1.方法一&#xff08;临时&#xff09; 2.方法二&#xff08;永久&#xff09; 一、mysql版本 mysql版本&#xff1a;5.7.23 二、 问题描述 在查询时使用group by语句&#xff0c;出现错误代码&#xff1a;1055&#xf…...

Java的@DateTimeFormat注解与@JsonFormat注解的使用对比

Java的DateTimeFormat注解与JsonFormat注解的使用对比 在Java开发中&#xff0c;处理日期和时间格式时&#xff0c;我们经常会使用到DateTimeFormat和JsonFormat注解。这两个注解主要用于格式化日期和时间&#xff0c;但在使用场景和功能上有所不同。本文将详细介绍这两个注解…...

德国云手机:企业移动办公解决方案

在现代商业环境中&#xff0c;移动办公已经成为一种趋势。德国云手机作为一种高效的解决方案&#xff0c;为企业提供了强大的支持。本文将探讨德国云手机如何优化企业的移动办公环境。 一、德国云手机的主要优势 高灵活性 德国云手机具有高度的灵活性&#xff0c;能够根据用户需…...

【React】useState:状态管理的基石

文章目录 一、什么是 useState&#xff1f;二、useState 的基本用法三、useState 的工作原理四、高级用法五、最佳实践 在现代前端开发中&#xff0c;React 是一个非常流行的库&#xff0c;而 useState 是 React 中最重要的 Hook 之一。useState 使得函数组件能够拥有自己的状态…...

商品中心关于缓存热key的解决方案

缓存热key一旦被击穿&#xff0c;流量势必会打到数据库&#xff0c;如果数据库崩了&#xff0c;游戏直接结束。 从两点来讨论&#xff1a;如何监控、如何解决。 如何监控 通过业务评估&#xff1a;比如营销活动推出的商品或者热卖的商品。基于LRU的命令&#xff0c;redis-cl…...

【Python系列】Parquet 数据处理与合并:高效数据操作实践

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

大脑自组织神经网络通俗讲解

大脑自组织神经网络的核心概念 大脑自组织神经网络&#xff0c;是指大脑中的神经元通过自组织的方式形成复杂的网络结构&#xff0c;从而实现信息的处理和存储。这一过程涉及到神经元的生长、连接和重塑&#xff0c;是大脑学习和记忆的基础。其核心公式涉及神经网络的权重更新…...

org.springframework.context.annotation.DeferredImportSelector如何使用?

DeferredImportSelector 是 Spring 框架中一个比较高级的功能&#xff0c;主要用于在 Spring 应用上下文的配置阶段延迟导入某些组件或配置。这个功能特别有用&#xff0c;比如在处理依赖于其他自动配置的场景&#xff0c;或者当你想基于某些条件来决定是否导入特定的配置类时。…...

缓慢变化维

缓慢变化维 缓慢变化维&#xff08;Slowly Changing Dimensions&#xff0c;简称SCD&#xff09;是数据仓库中的一个重要概念&#xff0c;用于处理维度表中数据随时间发生的变化。以下是一个具体的例子来描述缓慢变化维&#xff1a; 假设我们有一个销售数据仓库&#xff0c;其…...

Vue常用的指令都有哪些?都有什么作用?什么是自定义指令?

常用指令&#xff1a; 1、v-model 多用于表单元素实现双向数据绑定 (同angular中的ng-model) 2、v-for格式&#xff1a; v-for"字段名in(of)数组json"循环数组或json(同angular中的ng repeat),需要注意从vue2开始取消了$index 3、v-show 4、v-hide 隐藏内容 (同a…...

kettle从入门到精通 第八十一课 ETL之kettle kettle中的json对象字段写入postgresql中的json字段正确姿势

1、上一节可讲解了如何将json数据写入pg数据库表中的json字段&#xff0c;虽然实现了效果&#xff0c;但若客户继续使用表输出步骤则仍然无法解决问题。 正确的的解决方式是设置数据库连接参数stringtypeunspecified 2、stringtypeunspecified 参数的作用&#xff1a; 当设置…...

计算机网络实验-RIP配置与分析

前言&#xff1a;本博客仅作记录学习使用&#xff0c;部分图片出自网络&#xff0c;如有侵犯您的权益&#xff0c;请联系删除 一、相关知识 路由信息协议&#xff08;Routing Information Protocol&#xff0c;RIP&#xff09;是一种基于距离向量&#xff08;Distance-Vector&…...

33.【C语言】实践扫雷游戏

预备知识&#xff1a; 第13篇 一维数组 第13.5篇 二维数组 第28篇 库函数 第29篇 自定义函数 第30篇 函数补充 0x1游戏的运行&#xff1a; 1.随机布置雷 2.排雷 基本规则&#xff1a; 点开一个格子后&#xff0c;显示1&#xff0c;对于9*9&#xff0c;代表以1为中心的去…...

git学习笔记(总结了常见命令与学习中遇到的问题和解决方法)

前言 最近学习完git&#xff0c;学习过程中也遇到了很多问题&#xff0c;这里给大家写一篇总结性的博客&#xff0c;主要大概讲述git命令和部分难点问题&#xff08;简单的知识点这里就不再重复讲解了&#xff09; 一.git概述 1.1什么是git Git是一个分布式的版本控制软件。…...

【计算机网络】TCP协议详解

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 文章目录 1、引言2、udp和tcp协议的异同3、tcp服务器3.1、接口认识3.2、服务器设计 4、tcp客户端4.1、客户端设计4.2、说明 5、再研Tcp服务端5.1、多进程版5.2、多线程版 5、守护进程化5.1、什么是守护进程5.2…...

2.3 大模型硬件基础:AI芯片(上篇) —— 《带你自学大语言模型》系列

本系列目录 《带你自学大语言模型》系列部分目录及计划&#xff0c;完整版目录见&#xff1a;带你自学大语言模型系列 —— 前言 第一部分 走进大语言模型&#xff08;科普向&#xff09; 第一章 走进大语言模型 1.1 从图灵机到GPT&#xff0c;人工智能经历了什么&#xff1…...

Java | Leetcode Java题解之第279题完全平方数

题目&#xff1a; 题解&#xff1a; class Solution {public int numSquares(int n) {if (isPerfectSquare(n)) {return 1;}if (checkAnswer4(n)) {return 4;}for (int i 1; i * i < n; i) {int j n - i * i;if (isPerfectSquare(j)) {return 2;}}return 3;}// 判断是否为…...

JS逆向高级爬虫

JS逆向高级爬虫 JS逆向的目的是通过运行本地JS的文件或者代码,以实现脱离他的网站和浏览器,并且还能拿到和浏览器加密一样的效果。 10.1、编码算法 【1】摘要算法&#xff1a;一切从MD5开始 MD5是一个非常常见的摘要(hash)逻辑. 其特点就是小巧. 速度快. 极难被破解. 所以,…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

【QT控件】显示类控件

目录 一、Label 二、LCD Number 三、ProgressBar 四、Calendar Widget QT专栏&#xff1a;QT_uyeonashi的博客-CSDN博客 一、Label QLabel 可以用来显示文本和图片. 核心属性如下 代码示例: 显示不同格式的文本 1) 在界面上创建三个 QLabel 尺寸放大一些. objectName 分别…...