python机器学习8--自然语言处理(2)
1.移除用词
在很多情况下,有一些文章内的英文字符、标点符号分词的结果不符合自己的预期,会出现一些不想要的分词,此时就能通过以下的函数自己设定用词,并且删除。
jieba.analyse.set_stop_words("stop_words.txt")
2.自定比重分数
因为jieba对每一个字会给出IDF分数比重,但是在很多时候,会希望把文章中特别的关键字突显出来(或者降低),可以设定IDF分数高一些(或低一些),就能将想要的字突显出来(或者降低)。
jieba.analyse.set_idf_path("idf.txt") #读入IDF关键字比重分数
一个demo
import sys
from os import path
import jieba
import jieba.analyse
d=path.dirname(__file__)
jieba.load_userdict(path.join(d,r"C:\Users\nsy\Desktop\userdict.txt.txt"))
text="今天学习好烦躁,还没有效率"
content =text
extracted_tags=jieba.analyse.extract_tags(content,topK=10,withWeight=False)
print(" ,".join(extracted_tags))
jieba.analyse.set_stop_words(path.join(d, r"C:\Users\nsy\Desktop\stop_words.txt.txt"))
weighted_tags=jieba.analyse.extract_tags(content,topK=10,withWeight=True,allowPOS=('ns','n','vn','v'))
for item in weighted_tags:keyword,weight=itemprint(f"关键词:{keyword},权重:{weight}")

3.排列出最常出现的分词(次数的统计)
import sys
from os import path
import jieba
import jieba.analysed = path.dirname(__file__)# 根据Python版本打开文件
if sys.version_info > (3, 0):text = open(path.join(d, r"C:\\Users\\nsy\\Desktop\\test.txt"), 'r', encoding='utf-8').read()
else:text = open(path.join(d, r"C:\\Users\\nsy\\Desktop\\test.txt"), 'r').read()text = text.replace('\n', '')# 设置停用词文件路径,注意文件名是否正确
jieba.analyse.set_stop_words(r"C:\Users\nsy\Desktop\stop_words.txt.txt")
# 输出分词结果
print(" ".join(jieba.cut(text)))# 打印分隔线
print("-" * 10)# 使用自定义词典
jieba.load_userdict(path.join(d, r"C:\Users\nsy\Desktop\userdict.txt.txt"))# 初始化字典存储词频
dic = {}for ele in jieba.cut(text):if ele not in dic:dic[ele] = 1else:dic[ele] += 1# 按词频排序并输出
for w in sorted(dic, key=dic.get, reverse=True):print("%s %d" % (w, dic[w]))

4.通过jieba来分析和计算网站文章所探讨的主要内容
import sys
import jieba
import jieba.analyse
import urllib.request as httplib# 网络请求异常处理
try:# 网络文章的网址url = "https://csdnnews.blog.csdn.net/article/details/140678511?spm=1000.2115.3001.5928"# 送出连接的需求req = httplib.Request(url)# 打开网页response = httplib.urlopen(req)# 连接网页正常(200)if response.status == 200:# 如果是 Python 3.0 以上if sys.version_info > (3, 0):# 取得网页的数据并解码contents = response.read().decode(response.headers.get_content_charset())else:# 考虑到 Python 2 不再使用,这里可以省略对应的处理逻辑raise Exception("Python 2 is not supported")
except Exception as e:print("Error during HTTP request:", e)contents = ""# 去除不要的文字
jieba.analyse.set_stop_words("C:\\Users\\nsy\\Desktop\\stop_words.txt.txt")# 仅捕获地名、名词、动名词、动词
keywords = jieba.analyse.extract_tags(contents, topK=5, withWeight=True, allowPOS=('ns', 'n', 'vn'))# 输出关键词和相应的权重
for item in keywords:print("%s=%f" % (item[0], item[1]))print("*" * 40)# 数据结构字典 key:value
dic = {}# 做分词动作
words = jieba.cut(contents)# 仅处理名词、动名词
for word in words:if word not in dic:dic[word] = 1 # 记录为1else:dic[word] += 1 # 累加1# 由大到小排列并打印
for w in sorted(dic.items(), key=lambda x: x[1], reverse=True):print("%s: %d" % w)# 异常处理应该针对具体的操作,而不是放在代码的最后
相关文章:
python机器学习8--自然语言处理(2)
1.移除用词 在很多情况下,有一些文章内的英文字符、标点符号分词的结果不符合自己的预期,会出现一些不想要的分词,此时就能通过以下的函数自己设定用词,并且删除。 jieba.analyse.set_stop_words("stop_words.tx…...
LinkedList底层原理
节点(Node)结构 LinkedList 的核心是一个内部类 Node,每个 Node 对象代表链表中的一个元素,并且每个节点包含三个部分: 元素值 (item):存储实际的数据。前驱节点引用 (prev):指向当前节点前面…...
CSS技巧专栏:一日一例 11 -纯CSS实现多彩渐变按钮系列特效
CSS技巧专栏:一日一例 11 -纯CSS实现多彩渐变按钮系列特效 本篇,推荐给你几个按钮,先看一下图片 本例图片 案例分析 这是一个系列的按钮,它们具有共同的特点: 底层按钮层,具有一个彩色的渐变边框,上层是依据hover效果需要,可以是渐变,可以时白色。 鼠标hover效果…...
基于微信小程序+SpringBoot+Vue的自助点餐系统(带1w+文档)
基于微信小程序SpringBootVue的自助点餐系统(带1w文档) 基于微信小程序SpringBootVue的自助点餐系统(带1w文档) 基于微信小程序的自助点餐系统前后台分离,让商品订单,用户反馈信息,商品信息等相关信息集中在后台让管理员管理,让用…...
04-Charles中的Map Remote和Map Local介绍
Charles提供了Map Remote和Map Local两个功能。 Map Remote是将指定的网络请求重定向到另一个网址。Map Local是将指定的网络请求重定向到本地文件。 一、Map Remote 假设代码中调用了接口A,但是接口A的响应结果不能满足需求;此时,有另一个…...
R语言优雅的进行广义可加模型泊松回归分析
泊松回归(Poisson regression)是以结局变量为计数结果时的一种回归分析。泊松回归在我们的生活中应用非常广泛,例如:1分钟内过马路人数,1天内火车站的旅客流动数,1天内的银行取钱人数,一周内的销…...
大模型学习笔记十四:Agent模型微调
文章目录 一、大模型需要Agent技术的原因二、Prompt Engineering可以实现Agent吗?(1)ReAct原理展示和代码(2)ModelScope(3)AutoGPT(4)ToolLLaMA 三、既然AutoGPT可以满足…...
大疆创新2025校招内推
大疆2025校招-内推 一、我们是谁? 大疆研发软件团队,致力于把大疆的硬件设备和大疆用户紧密连接在一起,我们的使命是“让机器有温度,让数据会说话”。 在消费和手持团队,我们的温度来自于激发用户灵感并助力用户创作…...
搜索引擎项目(四)
SearchEngine 王宇璇/submit - 码云 - 开源中国 (gitee.com) 基于Servlet完成前后端交互 WebServlet("/searcher") public class DocSearcherServlet extends HttpServlet {private static DocSearcher docSearcher new DocSearcher();private ObjectMapper obje…...
声音克隆一键本地化部署 GPT-SoVITS
文章目录 GPT-SoVITS 介绍1:GPT-SoVITS安装2:GPT-SoVITS使用2.1 人声伴奏分离,去混响去延时工具2.2 语音切分工具2.3 语音降噪工具2.4 中文批量离线ASR工具2.5 语音文本校对标注工具GPT-SoVITS 介绍 GPT-SoVITS: 是一个由RVC变声器创始人“花儿不哭”推出的免费开源项目。…...
使用【Easypoi】实现百万数据导出
本文使用easypoi实现百万级数据导出 文章目录 前言一、一般情况下导出二、解决思路三、实现步骤导入依赖重写方法调用实现 结束 前言 下文实现了通过easypoi实现将百万级数据导出 一、一般情况下导出 一般导出流程(简单导出): 创建对应的…...
GRL-图强化学习
GRL代码解析 一、agent.py二、drl.py三、env.py四、policy.py五、utils.py 一、agent.py 这个Python文件agent.py实现了一个强化学习(Reinforcement Learning, RL)的智能体,用于在图环境(graph environment)中进行学习…...
昇思25天学习打卡营第22天|Pix2Pix实现图像转换
Pix2Pix图像转换学习总结 概述 Pix2Pix是一种基于条件生成对抗网络(cGAN)的深度学习模型,旨在实现不同图像风格之间的转换,如从语义标签到真实图像、灰度图到彩色图、航拍图到地图等。这一模型由Phillip Isola等人在2017年提出&…...
全感知、全覆盖、全智能的智慧快消开源了。
智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。AI安全管理平台&…...
ABC364:D - K-th Nearest(二分)
题目 在一条数线上有 NQNQ 个点 A1,…,AN,B1,…,BQA1,…,AN,B1,…,BQ ,其中点 AiAi 的坐标为 aiai ,点 BjBj 的坐标为 bjbj 。 就每个点 j1,2,…,Qj1,2,…,Q 回答下面的问题: 设 XX 是 A1,A2,…,ANA1,A2,…,AN 中最…...
hive中分区与分桶的区别
过去,在学习hive的过程中学习过分桶与分区。但是,却未曾将分区与分桶做详细比较。今天,回顾skew join时涉及到了分桶这一概念,一时间无法区分出分区与分桶的区别。查阅资料,特地记录下来。 一、Hive分区 1.分区一般是…...
Blender材质-PBR与纹理材质
1.PBR PBR:Physically Based Rendering 基于物理的渲染 BRDF:Bidirection Reflectance Distribution Function 双向散射分散函数 材质着色操作如下图: 2.纹理材质 左上角:编辑器类型中选择,着色器编辑器 新建着色器 -> 新建纹理 -> 新…...
微软的Edge浏览器如何设置兼容模式
微软的Edge浏览器如何设置兼容模式? Microsoft Edge 在浏览部分网站的时候,会被标记为不兼容,会有此网站需要Internet Explorer的提示,虽然可以手动点击在 Microsoft Edge 中继续浏览,但是操作起来相对复杂,…...
SpringBoot开启多端口探究(1)
文章目录 前情提要发散探索从management.port开始确定否需要开启额外端口额外端口是如何开启的ManagementContextFactory的故事从哪儿来创建过程 management 相关API如何被注册 小结 前情提要 最近遇到一个需求,在单个服务进程上开启多网络端口,将API的…...
优化算法:2.粒子群算法(PSO)及Python实现
一、定义 粒子群算法(Particle Swarm Optimization,PSO)是一种模拟鸟群觅食行为的优化算法。想象一群鸟在寻找食物,每只鸟都在尝试找到食物最多的位置。它们通过互相交流信息,逐渐向食物最多的地方聚集。PSO就是基于这…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
