Hive——UDF函数:高德地图API逆地理编码,实现离线解析经纬度转换省市区(离线地址库,非调用高德API)
文章目录
- 1. 需求背景
- 数据现状
- 业务需求
- 面临技术问题
- 寻求其他方案
- 2. 运行环境
- 软件版本
- Maven依赖
- 3. 获取离线地址库
- 4. Hive UDF函数实现
- 5. 创建Hive UDF函数
- 6. 参考
1. 需求背景
数据现状
目前业务系统某数据库表中记录了约3亿条用户行为数据,其中两列记录了用户触发某个业务动作时所在的经度和纬度数值,但是没有记录经纬度对应的省市区编码和名称信息。
业务需求
现在业务方提出一个数据需求,想要统计省市区对应的用户数等相关指标。
面临技术问题
因为历史数据量较大,如果通过调用高德API把所有历史数据中的经纬度对应的省市区请求回来,会面临一个个问题:在查看公司的高德API账户后,发现每天提供的最大调用量是300W次,那么要把历史3亿数据初始化调用完,需要30000W/300w=100天,要3个多月,这完全是不可接受的。
寻求其他方案
既然不能通过调用高德API的方式获取省市区,那有没有一个离线的地址库,然后从这个地址库获取历史数据的省市区呢。然后通过搜索引擎还真的找到了某个大神写的一个第三方库,可以从一个地址库文件来获取经纬度对应的省市区。
这个第三方库的Github地址:https://github.com/hsp8712/addrparser
2. 运行环境
软件版本
- Java 1.8
- Hive 3.1.0
- Hadoop 3.1.1
Maven依赖
<dependency><groupId>tech.spiro</groupId><artifactId>addrparser</artifactId><version>1.1</version></dependency><dependency><groupId>org.apache.hive</groupId><artifactId>hive-exec</artifactId><version>3.1.0</version><scope>provided</scope></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.1.1</version><scope>provided</scope></dependency>
3. 获取离线地址库
这个第三方库的作者提供了一个2019年9月份的离线地址库文件,考虑到这个文件的数据已经比较旧了,然后去翻看作者的源码文件,发现提供了爬取地址库的源码,直接拿来改改就可以用了(但前提是你要有请求高德API的API Key)。
下面是本人调整后并经过测试后可以正常请求地址库的代码(这个类中还引用了作者编写的其他类/接口,请参考作业的Github):
import org.apache.commons.cli.*;
import tech.spiro.addrparser.crawler.GetRegionException;
import tech.spiro.addrparser.crawler.RegionDataCrawler;
import tech.spiro.addrparser.io.RegionDataOutput;
import tech.spiro.addrparser.io.file.JSONFileRegionDataOutput;import java.io.IOException;
import java.util.Arrays;/*
*
* A command-line tool to crawl region data.
* */
public class CrawlerServer {private static Options options = new Options();static {options.addOption("k", "key", true, "Amap enterprise dev key");options.addOption("l", "level", true, "Root region level: 0-country, 1-province, 2-city");options.addOption("c", "code", true, "Root region code");options.addOption("o", "out", true, "Output file.");}private static void printHelp() {HelpFormatter formatter = new HelpFormatter();formatter.printHelp("CrawlerServer", options );}public static void main(String[] args) throws IOException, GetRegionException {CommandLineParser parser = new BasicParser();try {CommandLine cmd = parser.parse(options, args);
// String key = cmd.getOptionValue("k");
// String level = cmd.getOptionValue('l');
// String code = cmd.getOptionValue('c');
// String outputFile = cmd.getOptionValue('o');String key = "xxxxxxxxxxxxxxxxxxx";String level = "0";String code = "100000";String outputFile = "/Users/name/Desktop/china-region.json";if (!Arrays.asList("0", "1", "2").contains(level)) {throw new ParseException("option:level invalid.");}int _code = 0;try {_code = Integer.parseInt(code);} catch (NumberFormatException e) {throw new ParseException("code must be numeric.");}execute(key, level, _code, outputFile);} catch (ParseException e) {System.out.println(e.getMessage());printHelp();System.exit(-1);}}private static void execute(String amapKey, String level, int code, String out) throws IOException, GetRegionException {try (RegionDataOutput regionOutput = new JSONFileRegionDataOutput(out)) {RegionDataCrawler infoLoader = new RegionDataCrawler(regionOutput, amapKey);if ("0".equals(level)) {infoLoader.loadCountry();} else if ("1".equals(level)) {infoLoader.loadProv(code);} else if ("2".equals(level)) {infoLoader.loadCity(code);}}}
}
运行上面这段代码获取全国省市区地址库实践会比较久,大概要30分钟左右,生产的json文件china-region.json大小约160M。
4. Hive UDF函数实现
在获取到地址库数据之后,为了实现输入经度、维度输出省市区编码和名称的UDF函数,我们需要先把这个地址库文件china-region.json上传到一个指定的HDFS目录下面,这样在Hive中使用UDF函数的时候可以从HDFS目录下直接查询这个文件。
下面代码就是UDF函数的实现逻辑:输入经度、维度数值,然后查询离线地址库文件china-region.json,最终输出对应的省市区信息的json字符串。
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.io.Text;
import tech.spiro.addrparser.common.RegionInfo;
import tech.spiro.addrparser.io.RegionDataInput;
import tech.spiro.addrparser.io.file.JSONFileRegionDataInput;
import tech.spiro.addrparser.parser.Location;
import tech.spiro.addrparser.parser.LocationParserEngine;
import tech.spiro.addrparser.parser.ParserEngineException;import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;@Description(name = "GetRegionInfo",value = "_FUNC_(latitude, longitude) - Returns the province, city, and district names and codes based on latitude and longitude"
)
public class LgtLttUDF extends GenericUDF {// 经纬度-省市区基础库文件private static final String RESOURCE_FILE = "hdfs://nameservice/user/username/udf/china-region.json";// 位置解析引擎private static volatile LocationParserEngine sharedEngine;private static final Object lock = new Object();/*** 1. UDF函数入参校验* 2. 创建并初始化位置解析引擎* 3. 设置UDF函数返回值数据类型* @param arguments* @return ObjectInspector* @throws UDFArgumentException*/@Overridepublic ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {// 参数数量校验if (arguments.length != 2) {throw new UDFArgumentException("The function requires two arguments.");}// 参数类型校验if (!arguments[0].getCategory().equals(ObjectInspector.Category.PRIMITIVE) ||!arguments[1].getCategory().equals(ObjectInspector.Category.PRIMITIVE)) {throw new UDFArgumentException("GetRegionInfoUDF only accepts primitive types as arguments.");}// 创建并初始化位置解析引擎initializeSharedEngine();// 返回值return ObjectInspectorFactory.getStandardStructObjectInspector(Arrays.asList("province_name", "province_code", "city_name", "city_code", "district_name", "district_code"),Arrays.asList(PrimitiveObjectInspectorFactory.javaStringObjectInspector,PrimitiveObjectInspectorFactory.javaStringObjectInspector,PrimitiveObjectInspectorFactory.javaStringObjectInspector,PrimitiveObjectInspectorFactory.javaStringObjectInspector,PrimitiveObjectInspectorFactory.javaStringObjectInspector,PrimitiveObjectInspectorFactory.javaStringObjectInspector));}/*** 初始化位置解析引擎* @throws UDFArgumentException*/private void initializeSharedEngine() throws UDFArgumentException {if (sharedEngine == null) {synchronized (lock) {if (sharedEngine == null) {try {// china-region.json文件作为基础数据InputStreamReader reader = getJsonFileInputStreamFromHDFS(RESOURCE_FILE);RegionDataInput regionDataInput = new JSONFileRegionDataInput(reader);// 创建位置解析引擎sharedEngine = new LocationParserEngine(regionDataInput);// 初始化,加载数据,比较耗时sharedEngine.init();} catch (ParserEngineException | IOException e) {throw new UDFArgumentException("Failed to initialize LocationParserEngine: " + e.getMessage());}}}}}/*** 从HDFS路径读取JSON文件并返回InputStreamReader。** @param hdfsPath HDFS上的JSON文件路径* @return 文件的InputStreamReader对象,用于进一步读取内容* @throws IOException 如果发生I/O错误*/public static InputStreamReader getJsonFileInputStreamFromHDFS(String hdfsPath) throws IOException {// 创建Hadoop配置对象Configuration conf = new Configuration();// 根据配置获取文件系统实例FileSystem fs = FileSystem.get(conf);// 构建HDFS路径对象Path path = new Path(hdfsPath);// 检查文件是否存在if (!fs.exists(path)) {throw new IOException("File " + hdfsPath + " does not exist on HDFS.");}// 打开文件并获取输入流return new InputStreamReader(fs.open(path), "UTF-8");}/*** 通过经度、维度获取对应省市区的编码和名称* @param args* @return* @throws HiveException*/@Overridepublic Object evaluate(DeferredObject[] args) throws HiveException {if (args == null || args.length != 2) {return null;}try {// 经度double longitude = Double.parseDouble(args[1].get().toString());// 纬度double latitude = Double.parseDouble(args[0].get().toString());// 位置信息Location location = sharedEngine.parse(latitude, longitude);// 省市区信息RegionInfo provInfo = location.getProv();RegionInfo cityInfo = location.getCity();RegionInfo districtInfo = location.getDistrict();// 返回省市区编码、名称return new Object[]{new Text(provInfo.getName()),new Text(String.valueOf(provInfo.getCode())),new Text(cityInfo.getName()),new Text(String.valueOf(cityInfo.getCode())),new Text(districtInfo.getName()),new Text(String.valueOf(districtInfo.getCode()))};} catch (Exception e) {throw new HiveException("Error processing coordinates", e);}}@Overridepublic String getDisplayString(String[] children) {return "ltt_lgt_region(" + children[0] + ", " + children[1] + ")";}
}
5. 创建Hive UDF函数
将第四步的UDF实现代码打jar包:china_region.jar,Hive和Hadoop依赖不需要打进去,因为集群上都是有的,只需要把这个第三方的addrparser打进去就可以了。
-
将jar包china_region.jar上传到HDFS指定目录下
-
将jar包添加到hive的classpath。在Hive的cli中执行如下命令
hive> add jar china_region.jar -
创建UDF函数(永久性UDF函数)
hive> create function ltt_lgt as 'com.hive.udf.LgtLttUDF ' using jar 'hdfs://nameservice/user/username/udf/china_region.jar'; -
测试UDF函数
hive> select ltt_lgt(100.750934, 26.038634)
6. 参考
- https://github.com/hsp8712/addrparser
相关文章:
Hive——UDF函数:高德地图API逆地理编码,实现离线解析经纬度转换省市区(离线地址库,非调用高德API)
文章目录 1. 需求背景数据现状业务需求面临技术问题寻求其他方案 2. 运行环境软件版本Maven依赖 3. 获取离线地址库4. Hive UDF函数实现5. 创建Hive UDF函数6. 参考 1. 需求背景 数据现状 目前业务系统某数据库表中记录了约3亿条用户行为数据,其中两列记录了用户触…...
深入解析PHP框架:Symfony框架的魅力与优势
嘿,PHP开发者们!今天我们要聊一聊PHP世界中的一颗闪亮明星——Symfony框架。无论是初学者还是经验丰富的开发者,Symfony都为大家提供了强大的工具和灵活的特性。那就跟着我一起,来探索这个强大的PHP框架吧! 一、什么是…...
Go语言实战:基于Go1.19的站点模板爬虫技术解析与应用
一、引言 1.1 爬虫技术的背景与意义 在互联网高速发展的时代,数据已经成为新的石油,而爬虫技术则是获取这种“石油”的重要工具。爬虫,又称网络蜘蛛、网络机器人,是一种自动化获取网络上信息的程序。它广泛应用于搜索引擎、数据分…...
5个ArcGIS图源分享
数据是GIS的血液。 我们在《15个在线地图瓦片URL分享》一文中为你分享了15个地图瓦片URL链接,现在再为你分享5个能做ArcGIS中直接加载的图源! 并提供了能直接在ArcMAP和ArcGIS Pro的文件,如果你需要这些ArcGIS图源,请在文末查看…...
科普文:万字梳理31个Kafka问题
1、 kafka 是什么,有什么作用 2、Kafka为什么这么快 3、Kafka架构及名词解释 4、Kafka中的AR、ISR、OSR代表什么 5、HW、LEO代表什么 6、ISR收缩性 7、kafka follower如何与leader同步数据 8、Zookeeper 在 Kafka 中的作用(早期) 9、Kafka如何快…...
Unity UGUI 实战学习笔记(4)
仅作学习,不做任何商业用途 不是源码,不是源码! 是我通过"照虎画猫"写的,可能有些小修改 不提供素材,所以应该不算是盗版资源,侵权删 登录面板UI 登录数据逻辑 这是初始化的数据变量脚本 using System.…...
Python学习和面试中的常见问题及答案
整理了一些关于Python和机器学习算法的高级问题及其详细答案。这些问题涵盖了多个方面,包括数据处理、模型训练、评估、优化和实际应用。 一、Python 编程问题 解释Python中的装饰器(Decorators)是什么?它们的作用是什么…...
Mysql-索引视图
目录 1.视图 1.1什么是视图 1.2为什么需要视图 1.3视图的作用和优点 1.4创建视图 1.5更新视图 1.6视图使用规则 1.7修改视图 1.8删除视图 2.索引 2.1什么是索引 2.2索引特点 2.3索引分类 2.4索引优缺点 2.5创建索引 2.6查看索引 2.7删除索引 1.视图 1.1什么是…...
电子签章-开放签应用
开放签电子签章系统开源工具版旨在将电子签章、电子合同系统开发中的前后端核心技术开源开放,适合有技术能力的个人 / 团队学习或自建电子签章 \ 电子合同功能或应用,避免研发同仁在工作过程中重复造轮子,降低电子签章技术研发要求࿰…...
Ubuntu下设置文件和文件夹用户组和权限
在 Ubuntu 上,你可以使用 chmod 和 chown 命令来设置当前文件夹下所有文件的权限和所有者。 设置权限: 使用 chmod 命令可以更改文件和目录的权限。例如,要为当前文件夹下的所有文件和子目录设置特定权限,可以使用以下命令&#x…...
JavaSE从零开始到精通(九) - 双列集合
1.前言 Java 中的双列集合主要指的是可以存储键值对的集合类型,其中最常用的包括 Map 接口及其实现类。这些集合允许你以键值对的形式存储和管理数据,提供了便捷的按键访问值的方式。 2. HashMap HashMap 是基于哈希表实现的 Map 接口的类,…...
探索 OpenAI GPT-4o Mini:开发者的高效创新工具
探索 OpenAI GPT-4o Mini:开发者的高效创新工具 最近,OpenAI 推出了全新的 GPT-4o Mini 模型,以其出色的性能和极具吸引力的价格,引起了开发者们的广泛关注。作为开发者,你是否已经开始探索这个“迄今为止最具成本效益…...
藏文词典查单词,藏汉双语解释,推荐使用《藏语翻译通》App
《藏语翻译通》App推出了藏文词典、藏汉大词典、新术语等全新在线查单词功能。 藏汉互译 《藏语翻译通》App的核心功能之一是藏汉互译。用户只需输入中文或藏文,即可获得翻译结果。 藏文词典查单词 掌握一门语言,词汇是基础。《藏语翻译通》App内置藏…...
【机器学习基础】初探机器学习
【作者主页】Francek Chen 【专栏介绍】⌈Python机器学习⌋ 机器学习是一门人工智能的分支学科,通过算法和模型让计算机从数据中学习,进行模型训练和优化,做出预测、分类和决策支持。Python成为机器学习的首选语言,依赖于强大的开…...
SpringBoot轻松实现多数据源切换
一.需求背景 项目需要实现在多个数据源之间读写数据,例如在 A 数据源和 B 数据源读取数据,然后在 C 数据源写入数据 或者 部分业务数据从 A 数据源中读取、部分从B数据源中读取诸如此类需求。本文将简单模拟在SpringBoot项目中实现不同数据源之间读取数…...
Qt 5 当类的信号函数和成员函数,函数名相同时,连接信号和槽的写法。
前言:因为项目需要,软件要在windows7上运行,然后项目目前是qt6写的,然后搜索资料,需要qt5.15.2或之前的版本才能在win7上运行,于是下载了qt5.15.2,将qt6的代码在qt5编译时,很多错误&…...
Vuex 介绍及示例
Vuex 是 Vue.js 的一个状态管理模式和库,用于管理 Vue 应用中的全局状态。它是专门为 Vue.js 应用设计的,充分利用了 Vue 的细粒度响应系统来高效地更新状态。以下是对 Vuex 的一些介绍和它的基本使用方法: 主要概念 State(状态&…...
【elementui】记录如何重命名elementui组件名称
在main.js中,就是引入elementui的文件中 import ElementUI from element-ui import { Tree } from element-uiVue.use(ElementUI) Vue.component(el-tree-rename, Tree)...
MySQL面试篇章—MySQL锁机制
文章目录 MySQL的锁机制表级锁 & 行级锁排它锁和共享锁InnoDB行级锁行级锁间隙锁意向共享锁和意向排它锁 InnoDB表级锁死锁锁的优化建议MVCC多版本并发控制MyISAM表级锁表级锁并发插入优化锁调度优化 MySQL的锁机制 表级锁 & 行级锁 表级锁:对整张表加锁&…...
OAK相机支持的图像传感器有哪些?
相机支持的传感器 在 RVC2 上,固件必须具有传感器配置才能支持给定的相机传感器。目前,我们支持下面列出的相机传感器的开箱即用(固件中)传感器配置。 名称 分辨率 传感器类型 尺寸 最大 帧率 IMX378 40563040 彩色 1/2.…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
