徐州市住房和城乡建设局网站首页/北京网站制作400办理多少钱
文章目录
- 消息的序列化与反序列化
- 通信过程
- 服务端的实现
- main 函数(一个简易的客户端)
本文代码地址:
本文是7天用Go从零实现RPC框架GeeRPC
的第一篇。
- 使用
encoding/gob
实现消息的编解码(序列化与反序列化) - 实现一个简易的服务端,仅接受消息,不处理,代码约
200
行
消息的序列化与反序列化
一个典型的 RPC
调用如下:
err = client.Call("Arith.Multiply", args, &reply)
客户端发送的请求包括服务名 Arith
,方法名 Multiply
,参数 args
三个,服务端的响应包括错误 error
,返回值 reply
2
个。我们将请求和响应中的参数和返回值抽象为 body
,剩余的信息放在 header
中,那么就可以抽象出数据结构 Header
:
day1-codec/codec/codec.go
package codecimport "io"type Header struct {ServiceMethod string // format "Service.Method"Seq uint64 // sequence number chosen by clientError string
}
ServiceMethod
是服务名和方法名,通常与Go
语言中的结构体和方法相映射。Seq
是请求的序号,也可以认为是某个请求的ID
,用来区分不同的请求。Error
是错误信息,客户端置为空,服务端如果如果发生错误,将错误信息置于Error
中。
我们将和消息编解码相关的代码都放到 codec
子目录中,在此之前,还需要在根目录下使用 go mod init geerpc
初始化项目,方便后续子 package
之间的引用。
进一步,抽象出对消息体进行编解码的接口 Codec
,抽象出接口是为了实现不同的 Codec
实例:
type Codec interface {io.CloserReadHeader(*Header) errorReadBody(interface{}) errorWrite(*Header, interface{}) error
}
紧接着,抽象出 Codec
的构造函数,客户端和服务端可以通过 Codec
的 Type
得到构造函数,从而创建 Codec
实例。这部分代码和工厂模式类似,与工厂模式不同的是,返回的是构造函数,而非实例。
type NewCodecFunc func(io.ReadWriteCloser) Codectype Type stringconst (GobType Type = "application/gob"JsonType Type = "application/json" // not implemented
)var NewCodecFuncMap map[Type]NewCodecFuncfunc init() {NewCodecFuncMap = make(map[Type]NewCodecFunc)NewCodecFuncMap[GobType] = NewGobCodec
}
我们定义了 2
种 Codec
,Gob
和 Json
,但是实际代码中只实现了 Gob
一种,事实上,2
者的实现非常接近,甚至只需要把 gob
换成 json
即可。
首先定义 GobCodec
结构体,这个结构体由四部分构成,conn
是由构建函数传入,通常是通过 TCP
或者 Unix
建立 socket
时得到的链接实例,dec
和 enc
对应 gob
的 Decoder
和 Encoder
,buf
是为了防止阻塞而创建的带缓冲的 Writer
,一般这么做能提升性能。
day1-codec/codec/gob.go
package codecimport ("bufio""encoding/gob""io""log"
)type GobCodec struct {conn io.ReadWriteCloserbuf *bufio.Writerdec *gob.Decoderenc *gob.Encoder
}var _ Codec = (*GobCodec)(nil)func NewGobCodec(conn io.ReadWriteCloser) Codec {buf := bufio.NewWriter(conn)return &GobCodec{conn: conn,buf: buf,dec: gob.NewDecoder(conn),enc: gob.NewEncoder(buf),}
}
在
Go
语言中,json.NewDecoder
和json.Unmarshal
都用于将JSON
数据解析为Go
中的数据结构,但它们有一些区别:
json.NewDecoder
是通过创建一个Decoder
对象,从一个io.Reader
(如os.Stdin
、文件、网络连接等)中读取JSON
数据并进行解码。json.Unmarshal
则是直接将JSON
数据(以字节切片[]byte
或者字符串的形式)解析并映射到指定的数据结构。使用场景上,如果数据是从一个输入流中读取,通常使用
json.NewDecoder
;如果已经有了JSON
数据的字节切片或字符串,使用json.Unmarshal
会更方便。json.NewEncoder
和json.Marshal
同理。
接着实现 ReadHeader
、ReadBody
、Write
和 Close
方法。
func (c *GobCodec) ReadHeader(h *Header) error {return c.dec.Decode(h)
}func (c *GobCodec) ReadBody(body interface{}) error {return c.dec.Decode(body)
}func (c *GobCodec) Write(h *Header, body interface{}) (err error) {defer func() {_ = c.buf.Flush()if err != nil {_ = c.Close()}}()if err := c.enc.Encode(h); err != nil {log.Println("rpc codec: gob error encoding header:", err)return err}if err := c.enc.Encode(body); err != nil {log.Println("rpc codec: gob error encoding body:", err)return err}return nil
}func (c *GobCodec) Close() error {return c.conn.Close()
}
通信过程
客户端与服务端的通信需要协商一些内容,例如 HTTP
报文,分为header
和 body
2
部分,body
的格式和长度通过 header
中的 Content-Type
和 Content-Length
指定,服务端通过解析 header
就能够知道如何从 body
中读取需要的信息。对于 RPC
协议来说,这部分协商是需要自主设计的。为了提升性能,一般在报文的最开始会规划固定的字节,来协商相关的信息。比如第1
个字节用来表示序列化方式,第2
个字节表示压缩方式,第3-6
字节表示 header
的长度,7-10
字节表示 body
的长度。
对于 GeeRPC
来说,目前需要协商的唯一一项内容是消息的编解码方式。我们将这部分信息,放到结构体 Option
中承载。目前,已经进入到服务端的实现阶段了。
day1-codec/server.go
package geerpcconst MagicNumber = 0x3bef5ctype Option struct {MagicNumber int // MagicNumber marks this's a geerpc requestCodecType codec.Type // client may choose different Codec to encode body
}var DefaultOption = &Option{MagicNumber: MagicNumber,CodecType: codec.GobType,
}
一般来说,涉及协议协商的这部分信息,需要设计固定的字节来传输的。但是为了实现上更简单,GeeRPC
客户端固定采用 JSON
编码 Option
,后续的 header
和 body
的编码方式由 Option
中的 CodeType
指定,服务端首先使用 JSON
解码 Option
,然后通过 Option
的 CodeType
解码剩余的内容。即报文将以这样的形式发送:
| Option{MagicNumber: xxx, CodecType: xxx} | Header{ServiceMethod ...} | Body interface{} |
| <------ 固定 JSON 编码 ------> | <------- 编码方式由 CodeType 决定 ------->|
在一次连接中,Option
固定在报文的最开始,Header
和 Body
可以有多个,即报文可能是这样的。
| Option | Header1 | Body1 | Header2 | Body2 | ...
服务端的实现
通信过程已经定义清楚了,那么服务端的实现就比较直接了。
day1-codec/server.go
// Server represents an RPC Server.
type Server struct{}// NewServer returns a new Server.
func NewServer() *Server {return &Server{}
}// DefaultServer is the default instance of *Server.
var DefaultServer = NewServer()// Accept accepts connections on the listener and serves requests
// for each incoming connection.
func (server *Server) Accept(lis net.Listener) {for {conn, err := lis.Accept()if err != nil {log.Println("rpc server: accept error:", err)return}go server.ServeConn(conn)}
}// Accept accepts connections on the listener and serves requests
// for each incoming connection.
func Accept(lis net.Listener) { DefaultServer.Accept(lis) }
- 首先定义了结构体
Server
,没有任何的成员字段。 - 实现了
Accept
方式,net.Listener
作为参数,for
循环等待socket
连接建立,并开启子协程处理,处理过程交给了ServerConn
方法。 DefaultServer
是一个默认的Server
实例,主要为了用户使用方便。
如果想启动服务,过程是非常简单的,传入 listener
即可,tcp
协议和 unix
协议都支持。
lis, _ := net.Listen("tcp", ":9999")
geerpc.Accept(lis)
ServeConn
的实现就和之前讨论的通信过程紧密相关了,首先使用 json.NewDecoder
反序列化得到 Option
实例,检查 MagicNumber
和 CodeType
的值是否正确。然后根据 CodeType
得到对应的消息编解码器,接下来的处理交给 serverCodec
。
// ServeConn runs the server on a single connection.
// ServeConn blocks, serving the connection until the client hangs up.
func (server *Server) ServeConn(conn io.ReadWriteCloser) {defer func() { _ = conn.Close() }()var opt Optionif err := json.NewDecoder(conn).Decode(&opt); err != nil {log.Println("rpc server: options error: ", err)return}if opt.MagicNumber != MagicNumber {log.Printf("rpc server: invalid magic number %x", opt.MagicNumber)return}f := codec.NewCodecFuncMap[opt.CodecType]if f == nil {log.Printf("rpc server: invalid codec type %s", opt.CodecType)return}server.serveCodec(f(conn))
}// invalidRequest is a placeholder for response argv when error occurs
var invalidRequest = struct{}{}func (server *Server) serveCodec(cc codec.Codec) {sending := new(sync.Mutex) // make sure to send a complete responsewg := new(sync.WaitGroup) // wait until all request are handledfor {req, err := server.readRequest(cc)if err != nil {if req == nil {break // it's not possible to recover, so close the connection}req.h.Error = err.Error()server.sendResponse(cc, req.h, invalidRequest, sending)continue}wg.Add(1)go server.handleRequest(cc, req, sending, wg)}wg.Wait()_ = cc.Close()
}
serveCodec
的过程非常简单。主要包含三个阶段
- 读取请求
readRequest
- 处理请求
handleRequest
- 回复请求
sendResponse
之前提到过,在一次连接中,允许接收多个请求,即多个 request header
和 request body
,因此这里使用了for
无限制地等待请求的到来,直到发生错误(例如连接被关闭,接收到的报文有问题等),这里需要注意的点有三个:
handleRequest
使用了协程并发执行请求。- 处理请求是并发的,但是回复请求的报文必须是逐个发送的,并发容易导致多个回复报文交织在一起,客户端无法解析。在这里使用锁(
sending
)保证。 - 尽力而为,只有在
header
解析失败时,才终止循环。
// request stores all information of a call
type request struct {h *codec.Header // header of requestargv, replyv reflect.Value // argv and replyv of request
}func (server *Server) readRequestHeader(cc codec.Codec) (*codec.Header, error) {var h codec.Headerif err := cc.ReadHeader(&h); err != nil {if err != io.EOF && err != io.ErrUnexpectedEOF {log.Println("rpc server: read header error:", err)}return nil, err}return &h, nil
}func (server *Server) readRequest(cc codec.Codec) (*request, error) {h, err := server.readRequestHeader(cc)if err != nil {return nil, err}req := &request{h: h}// TODO: now we don't know the type of request argv// day 1, just suppose it's stringreq.argv = reflect.New(reflect.TypeOf(""))if err = cc.ReadBody(req.argv.Interface()); err != nil {log.Println("rpc server: read argv err:", err)}return req, nil
}func (server *Server) sendResponse(cc codec.Codec, h *codec.Header, body interface{}, sending *sync.Mutex) {sending.Lock()defer sending.Unlock()if err := cc.Write(h, body); err != nil {log.Println("rpc server: write response error:", err)}
}func (server *Server) handleRequest(cc codec.Codec, req *request, sending *sync.Mutex, wg *sync.WaitGroup) {// TODO, should call registered rpc methods to get the right replyv// day 1, just print argv and send a hello messagedefer wg.Done()log.Println(req.h, req.argv.Elem())req.replyv = reflect.ValueOf(fmt.Sprintf("geerpc resp %d", req.h.Seq))server.sendResponse(cc, req.h, req.replyv.Interface(), sending)
}
目前还不能判断 body
的类型,因此在readRequest
和 handleRequest
中,day1
将 body
作为字符串处理。接收到请求,打印 header
,并回复 geerpc resp ${req.h.Seq}
。这一部分后续再实现。
main 函数(一个简易的客户端)
day1
的内容就到此为止了,在这里我们已经实现了一个消息的编解码器 GobCodec
,并且客户端与服务端实现了简单的协议交换(protocol exchange
),即允许客户端使用不同的编码方式。同时实现了服务端的雏形,建立连接,读取、处理并回复客户端的请求。
接下来,我们就在 main
函数中看看如何使用刚实现的 GeeRPC
吧。
day1-codec/main/main.go
package mainimport ("encoding/json""fmt""geerpc""geerpc/codec""log""net""time"
)func startServer(addr chan string) {// pick a free portl, err := net.Listen("tcp", ":0")if err != nil {log.Fatal("network error:", err)}log.Println("start rpc server on", l.Addr())addr <- l.Addr().String()geerpc.Accept(l)
}func main() {addr := make(chan string)go startServer(addr)// in fact, following code is like a simple geerpc clientconn, _ := net.Dial("tcp", <-addr)defer func() { _ = conn.Close() }()time.Sleep(time.Second)// send options_ = json.NewEncoder(conn).Encode(geerpc.DefaultOption)cc := codec.NewGobCodec(conn)// send request & receive responsefor i := 0; i < 5; i++ {h := &codec.Header{ServiceMethod: "Foo.Sum",Seq: uint64(i),}_ = cc.Write(h, fmt.Sprintf("geerpc req %d", h.Seq))_ = cc.ReadHeader(h)var reply string_ = cc.ReadBody(&reply)log.Println("reply:", reply)}
}
- 在
startServer
中使用了信道addr
,确保服务端端口监听成功,客户端再发起请求。 - 客户端首先发送
Option
进行协议交换,接下来发送消息头h := &codec.Header{}
,和消息体geerpc req ${h.Seq}
。 - 最后解析服务端的响应
reply
,并打印出来。
执行结果如下:
start rpc server on [::]:63662
&{Foo.Sum 0 } geerpc req 0
reply: geerpc resp 0
&{Foo.Sum 1 } geerpc req 1
reply: geerpc resp 1
&{Foo.Sum 2 } geerpc req 2
reply: geerpc resp 2
&{Foo.Sum 3 } geerpc req 3
reply: geerpc resp 3
&{Foo.Sum 4 } geerpc req 4
reply: geerpc resp 4
原文链接:https://geektutu.com/post/geerpc-day1.html
相关文章:

day1 服务端与消息编码
文章目录 消息的序列化与反序列化通信过程服务端的实现main 函数(一个简易的客户端) 本文代码地址: 本文是7天用Go从零实现RPC框架GeeRPC的第一篇。 使用 encoding/gob 实现消息的编解码(序列化与反序列化)实现一个简易的服务端,仅接受消息,…...

部署WMS仓储管理系统项目后的注意事项
在探讨现代WMS仓储管理系统的部署与运营时,我们不得不深入剖析其背后的多维度考量与策略,以确保这一核心系统能够无缝融入并推动企业的整体供应链优化。WMS仓储管理系统作为连接仓库内部操作与外部供应链的桥梁,其重要性不言而喻,…...

跨网段 IP 地址通信故障分析
现如今计算机网络的规模和复杂性不断增加,跨网段通信成为网络运行中的常见需求。但如果设备处于不同网段且路由设置出现偏差时就会导致通信故障,严重影响网络的正常运行和数据传输。 1.跨网段通信的基本原理 跨网段通信依赖于路由器的路由功能。路由器根…...

存储引擎MySQL和InnoDB(数据库管理与高可用)
1、存储引擎 存储引擎是核心组成部分, 是构成数据库最基础最底层的部件, 利用这个部件,你的Mysql能够对数据进行查询、创建、更新、删除等操作, 也就是说,用户所输入的一系列的mysql语句,是由存储引擎来…...

探索局域网传输新境界 | 闪电藤 v2.2.7
在这个数字化时代,文件的快速、安全传输是我们日常工作中不可或缺的一部分。今天,电脑天空向大家介绍一款革命性的局域网文件传输工具——闪电藤,它将彻底改变你的文件传输体验。 🎨 界面设计 —— 极简之美 闪电藤采用极简的设…...

Tiling Window Management
我主要说一下windows版的 下面这个链接用的人比较多 GitHub - LGUG2Z/komorebi: A tiling window manager for Windows 🍉 建议搭配 GitHub - da-rth/yasb: A highly configurable cross-platform (Windows) status bar written in Python. GitHub - amnweb/ya…...

9. kubernetes资源——pv/pvc持久卷
kubernetes资源——pv/pvc持久卷 一、volume数据卷1、hostPath2、挂载nfs实现持久化 二、pv/pvc 持久卷/持久卷声明1、pv/pvc介绍2、pv/pvc的使用流程2.1 创建pv2.2 创建pvc2.3 创建pod,使用pv做持久化 一、volume数据卷 用于pod中的数据的持久化存储 支持很多的卷…...

2024西安铁一中集训DAY27 ---- 模拟赛((bfs,dp) + 整体二分 + 线段树合并 + (扫描线 + 线段树))
文章目录 前言时间安排及成绩题解A. 倒水(bfs dp)B. 让他们连通(整体二分 按秩合并并查集 / kruskal重构树)C. 通信网络(线段树合并 二分)D. 3SUM(扫描线 线段树) 前言 T1没做出…...

STM32F401VET6 PROTEUS8 ILI9341 驱动显示及仿真
stm32cubemx新建工程代码,并生成工程 设置gpio 设置SPI 其他的参考stm32默认设置 然后编辑驱动代码 ili9341.h #ifndef ILI9341_H #define ILI9341_H#include <stdbool.h> #include <stdint.h>#include "glcdfont.h" #include "stm32…...

抖音视频素材网站有哪些?非常好用的5个抖音视频素材库分享
在打造引人入胜的抖音视频时,选择高品质的视频素材至关重要。优选的素材不仅能够显著提升视频的吸引力,还能让你的作品在众多视频中突出重围。对于抖音创作者而言,让我们探索一些备受推崇的视频素材平台,帮助你制作出既专业又引人…...

【数据结构】链式二叉树的实现和思路分析及二叉树OJ
【数据结构】链式二叉树的实现和思路分析及二叉树OJ 🔥个人主页:大白的编程日记 🔥专栏:数据结构 文章目录 【数据结构】链式二叉树的实现和思路分析及二叉树OJ前言一.链式二叉树的定义及结构二.链式二叉树的遍历2.1前序遍历2.2中…...

项目成功秘诀:工单管理系统如何加速进程
国内外主流的10款项目工单管理系统对比:PingCode、Worktile、浪潮云工单管理系统、华为企业智能工单系统、金蝶云苍穹、紫光软件管理系统、Jira、Asana、ServiceNow、Smartsheet。 在管理日益复杂的个人项目时,找到一款能够真正符合需求的管理软件&#…...

OpenGauss和GaussDB有何不同
OpenGauss和GaussDB是两个不同的数据库产品,它们都具有高性能、高可靠性和高可扩展性等优点,但是它们之间也有一些区别和相似之处。了解它们之间的关系、区别、建议、适用场景和如何学习,对于提高技能和保持行业敏感性非常重要。本文将深入探…...

星环科技携手东华软件推出一表通报送联合解决方案
随着国家金融监督管理总局“一表通”试点工作的持续推进,星环科技携手东华软件推出了基于星环科技分布式分析型数据库ArgoDB和大数据基础平台TDH的一表通报送联合解决方案,并已在多地实施落地中得到充分验证。 星环科技与东华软件作为战略合作伙伴&…...

YOLOv10环境搭建、训练自己的目标检测数据集、实际验证和测试
1 环境搭建 1.1 在官方仓库的给定的使用python3.9版本,则使用conda创建对应虚拟环境。 conda create -n yolov10 python3.9 1.2 切换到对应虚拟环境 conda activate yolov10 1.3 在指定目录下克隆yolov10官方仓库代码 git clone https://github.com/THU-MIG/yo…...

Harmony Next -- 通用标题栏:高度自定义,可设置沉浸式状态,正常状态下为:左侧返回、居中标题,左中右均可自定义视图。
hm_common_title_bar OpenHarmony三方库中心仓:https://ohpm.openharmony.cn/#/cn/detail/common_title_bar 介绍 一款通用标题栏,支持高度自定义,可设置沉浸式状态,正常状态下为:左侧返回、居中标题,左…...

甄选范文“论数据分片技术及其应用”软考高级论文,系统架构设计师论文
论文真题 数据分片就是按照一定的规则,将数据集划分成相互独立、正交的数据子集,然后将数据子集分布到不同的节点上。通过设计合理的数据分片规则,可将系统中的数据分布在不同的物理数据库中,达到提升应用系统数据处理速度的目的。 请围绕“论数据分片技术及其应用”论题…...

【elementui】记录el-table设置左、右列固定时,加大滚动条宽度至使滚动条部分被固定列遮挡的解决方法
当前elementui版本:2.8.2 现象:此处el-table__body-wrapper默认的滚动条宽度为8px,我加大到10px,如果不设置fixed一切正常,设置fixed后会被遮挡一点 el-table__fixed-right::before, .el-table__fixed::before 设置…...

Python人工智能:一、语音合成和语音识别
在Python中,语音合成(Text-To-Speech, TTS)和语音识别(Speech-To-Text, STT)是两个非常重要的功能,它们在人工智能、自动化、辅助技术以及许多其他领域都有广泛的应用。下面将分别介绍这两个领域在Python中…...

C/C++进阶 (8)哈希表(STL)
个人主页:仍有未知等待探索-CSDN博客 专题分栏:C 本文着重于模拟实现哈希表,并非是哈希表的使用。 实现的哈希表的底层用的是线性探测法,并非是哈希桶。 目录 一、标准库中的哈希表 1、unordered_map 2、unordered_set 二、模…...
2024电赛H题参考方案(+视频演示+核心控制代码)——自动行驶小车
目录 一、题目要求 二、参考资源获取 三、TI板子可能用到的资源 1、环境搭建及工程移植 2、相关模块的移植 四、控制参考方案 1、整体控制方案视频演示 2、视频演示部分核心代码 五、总结 一、题目要求 小编自认为:此次控制类类型题目的H题,相较于往年较…...

设计模式14-享元模式
设计模式14-享元模式 由来动机定义与结构代码推导特点享元模式的应用总结优点缺点使用享元模式的注意事项 由来动机 在很多应用中,可能会创建大量相似对象,例如在文字处理器中每个字符对象。在这些场景下,如果每个对象都独立存在,…...

Javascript中canvas与svg详解
Canvas 在JavaScript中,<canvas> 元素用于在网页上绘制图形,如线条、圆形、矩形、图像等。它是一个通过JavaScript和HTML的<canvas>元素来工作的绘图表面。<canvas> 元素自身并不具备绘图能力,它仅仅提供了一个绘图环境&a…...

【BUG】已解决:No Python at ‘C:Users…Python Python39python. exe’
No Python at ‘C:Users…Python Python39python. exe’ 目录 No Python at ‘C:Users…Python Python39python. exe’ 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,211科班…...

Flink SQL 的工作机制
前言 Flink SQL 引擎的工作流总结如图所示。 从图中可以看出,一段查询 SQL / 使用TableAPI 编写的程序(以下简称 TableAPI 代码)从输入到编译为可执行的 JobGraph 主要经历如下几个阶段: 将 SQL文本 / TableAPI 代码转化为逻辑执…...

[AI Mem0] 源码解读,带你了解 Mem0 的实现
Mem0 的 CRUD 到底是如何实现的?我们来看下源码。 使用 先来看下,如何使用 Mem0 import os os.environ["OPENAI_API_KEY"] "sk-xxx"from mem0 import Memorym Memory()# 1. Add: Store a memory from any unstructured text re…...

【LLM】-10-部署llama-3-chinese-8b-instruct-v3 大模型
目录 1、模型下载 2、下载项目代码 3、启动模型 4、模型调用 4.1、completion接口 4.2、聊天(chat completion) 4.3、多轮对话 4.4、文本嵌入向量 5、Java代码实现调用 由于在【LLM】-09-搭建问答系统-对输入Prompt检查-CSDN博客 关于提示词注入…...

C语言 之 理解指针(4)
文章目录 1. 字符指针变量2. 数组指针变量2.1 对数组指针变量的理解2.2 数组指针变量的初始化 3. 二维数组传参的本质4. 函数指针变量4.1 函数指针变量的创建4.2 函数指针变量的使用 5. 函数指针数组 1. 字符指针变量 我们在前面使用的主要是整形指针变量,现在要学…...

Java设计模式—单例模式(Singleton Pattern)
目录 一、定义 二、应用场景 三、具体实现 示例一 示例二 四、懒汉与饿汉 饿汉模式 懒汉模式 五、总结 六、说明 一、定义 二、应用场景 单例模式的应用场景主要包括以下几个方面: 日志系统:在应用程序中,通常只需要一个日…...

AV1帧间预测(二):运动补偿
运动补偿(Motion Compensation,MC)是帧间预测最基础的工具,AV1支持两种运动补偿方式,一种是传统的平移运动补偿,另一种是仿射运动补偿。下面分别介绍这两种运动补偿方法。 平移运动补偿 平移运动补偿是最传统的运动补偿方式,H.26…...