阿里云做网站视频教程/seo引擎优化教程
Diffusion扩散模型
关于扩散模型(Diffusion Models)有很多种理解,本文的介绍是基于denoising diffusion probabilistic model (DDPM),DDPM已经在(无)条件图像/音频/视频生成领域取得了较多显著的成果,现有的比较受欢迎的的例子包括由OpenAI主导的GLIDE和DALL-E 2、由海德堡大学主导的潜在扩散和由Google Brain主导的图像生成。
实际上生成模型的扩散概念已经在(Sohl-Dickstein et al., 2015)中介绍过。然而,直到(Song et al., 2019)(斯坦福大学)和(Ho et al., 2020)(在Google Brain)才各自独立地改进了这种方法。
本文是在Phil Wang基于PyTorch框架的复现的基础上(而它本身又是基于TensorFlow实现),迁移到MindSpore AI框架上实现的。
import math
from functools import partial
%matplotlib inline
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
import numpy as np
from multiprocessing import cpu_count
from download import downloadimport mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor, Parameter
from mindspore import dtype as mstype
from mindspore.dataset.vision import Resize, Inter, CenterCrop, ToTensor, RandomHorizontalFlip, ToPIL
from mindspore.common.initializer import initializer
from mindspore.amp import DynamicLossScalerms.set_seed(0)
模型简介
什么是Diffusion Model?
如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。 Diffusion对于图像的处理包括以下两个过程:
-
我们选择的固定(或预定义)正向扩散过程 𝑞q :它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声
-
一个学习的反向去噪的扩散过程 𝑝𝜃pθ :通过训练神经网络从纯噪声开始逐渐对图像去噪,直到最终得到一个实际的图像
由 𝑡t 索引的正向和反向过程都发生在某些有限时间步长 𝑇(DDPM作者使用 𝑇=1000T=1000)内。从𝑡=0开始,在数据分布中采样真实图像 𝐱0(本文使用一张来自ImageNet的猫图像形象的展示了diffusion正向添加噪声的过程),正向过程在每个时间步长 𝑡 都从高斯分布中采样一些噪声,再添加到上一个时刻的图像中。假定给定一个足够大的 𝑇和一个在每个时间步长添加噪声的良好时间表,您最终会在 𝑡=𝑇 通过渐进的过程得到所谓的各向同性的高斯分布。
构建Diffusion模型
下面,我们逐步构建Diffusion模型。
首先,我们定义了一些帮助函数和类,这些函数和类将在实现神经网络时使用。
def rearrange(head, inputs):b, hc, x, y = inputs.shapec = hc // headreturn inputs.reshape((b, head, c, x * y))def rsqrt(x):res = ops.sqrt(x)return ops.inv(res)def randn_like(x, dtype=None):if dtype is None:dtype = x.dtyperes = ops.standard_normal(x.shape).astype(dtype)return resdef randn(shape, dtype=None):if dtype is None:dtype = ms.float32res = ops.standard_normal(shape).astype(dtype)return resdef randint(low, high, size, dtype=ms.int32):res = ops.uniform(size, Tensor(low, dtype), Tensor(high, dtype), dtype=dtype)return resdef exists(x):return x is not Nonedef default(val, d):if exists(val):return valreturn d() if callable(d) else ddef _check_dtype(d1, d2):if ms.float32 in (d1, d2):return ms.float32if d1 == d2:return d1raise ValueError('dtype is not supported.')class Residual(nn.Cell):def __init__(self, fn):super().__init__()self.fn = fndef construct(self, x, *args, **kwargs):return self.fn(x, *args, **kwargs) + xdef Upsample(dim):return nn.Conv2dTranspose(dim, dim, 4, 2, pad_mode="pad", padding=1)def Downsample(dim):return nn.Conv2d(dim, dim, 4, 2, pad_mode="pad", padding=1)
位置向量
由于神经网络的参数在时间(噪声水平)上共享,作者使用正弦位置嵌入来编码𝑡t,灵感来自Transformer(Vaswani et al., 2017)。对于批处理中的每一张图像,神经网络"知道"它在哪个特定时间步长(噪声水平)上运行。
SinusoidalPositionEmbeddings
模块采用(batch_size, 1)
形状的张量作为输入(即批处理中几个有噪声图像的噪声水平),并将其转换为(batch_size, dim)
形状的张量,其中dim
是位置嵌入的尺寸。然后,我们将其添加到每个剩余块中。
class SinusoidalPositionEmbeddings(nn.Cell):def __init__(self, dim):super().__init__()self.dim = dimhalf_dim = self.dim // 2emb = math.log(10000) / (half_dim - 1)emb = np.exp(np.arange(half_dim) * - emb)self.emb = Tensor(emb, ms.float32)def construct(self, x):emb = x[:, None] * self.emb[None, :]emb = ops.concat((ops.sin(emb), ops.cos(emb)), axis=-1)return emb
ResNet/ConvNeXT块
接下来,我们定义U-Net模型的核心构建块。DDPM作者使用了一个Wide ResNet块(Zagoruyko et al., 2016),但Phil Wang决定添加ConvNeXT(Liu et al., 2022)替换ResNet,因为后者在图像领域取得了巨大成功。
在最终的U-Net架构中,可以选择其中一个或另一个,本文选择ConvNeXT块构建U-Net模型。
class Block(nn.Cell):def __init__(self, dim, dim_out, groups=1):super().__init__()self.proj = nn.Conv2d(dim, dim_out, 3, pad_mode="pad", padding=1)self.proj = c(dim, dim_out, 3, padding=1, pad_mode='pad')self.norm = nn.GroupNorm(groups, dim_out)self.act = nn.SiLU()def construct(self, x, scale_shift=None):x = self.proj(x)x = self.norm(x)if exists(scale_shift):scale, shift = scale_shiftx = x * (scale + 1) + shiftx = self.act(x)return xclass ConvNextBlock(nn.Cell):def __init__(self, dim, dim_out, *, time_emb_dim=None, mult=2, norm=True):super().__init__()self.mlp = (nn.SequentialCell(nn.GELU(), nn.Dense(time_emb_dim, dim))if exists(time_emb_dim)else None)self.ds_conv = nn.Conv2d(dim, dim, 7, padding=3, group=dim, pad_mode="pad")self.net = nn.SequentialCell(nn.GroupNorm(1, dim) if norm else nn.Identity(),nn.Conv2d(dim, dim_out * mult, 3, padding=1, pad_mode="pad"),nn.GELU(),nn.GroupNorm(1, dim_out * mult),nn.Conv2d(dim_out * mult, dim_out, 3, padding=1, pad_mode="pad"),)self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()def construct(self, x, time_emb=None):h = self.ds_conv(x)if exists(self.mlp) and exists(time_emb):assert exists(time_emb), "time embedding must be passed in"condition = self.mlp(time_emb)condition = condition.expand_dims(-1).expand_dims(-1)h = h + conditionh = self.net(h)return h + self.res_conv(x)
Attention模块
接下来,我们定义Attention模块,DDPM作者将其添加到卷积块之间。Attention是著名的Transformer架构(Vaswani et al., 2017),在人工智能的各个领域都取得了巨大的成功,从NLP到蛋白质折叠。Phil Wang使用了两种注意力变体:一种是常规的multi-head self-attention(如Transformer中使用的),另一种是LinearAttention(Shen et al., 2018),其时间和内存要求在序列长度上线性缩放,而不是在常规注意力中缩放。 要想对Attention机制进行深入的了解,请参照Jay Allamar的精彩的博文。
class Attention(nn.Cell):def __init__(self, dim, heads=4, dim_head=32):super().__init__()self.scale = dim_head ** -0.5self.heads = headshidden_dim = dim_head * headsself.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, pad_mode='valid', has_bias=False)self.to_out = nn.Conv2d(hidden_dim, dim, 1, pad_mode='valid', has_bias=True)self.map = ops.Map()self.partial = ops.Partial()def construct(self, x):b, _, h, w = x.shapeqkv = self.to_qkv(x).chunk(3, 1)q, k, v = self.map(self.partial(rearrange, self.heads), qkv)q = q * self.scale# 'b h d i, b h d j -> b h i j'sim = ops.bmm(q.swapaxes(2, 3), k)attn = ops.softmax(sim, axis=-1)# 'b h i j, b h d j -> b h i d'out = ops.bmm(attn, v.swapaxes(2, 3))out = out.swapaxes(-1, -2).reshape((b, -1, h, w))return self.to_out(out)class LayerNorm(nn.Cell):def __init__(self, dim):super().__init__()self.g = Parameter(initializer('ones', (1, dim, 1, 1)), name='g')def construct(self, x):eps = 1e-5var = x.var(1, keepdims=True)mean = x.mean(1, keep_dims=True)return (x - mean) * rsqrt((var + eps)) * self.gclass LinearAttention(nn.Cell):def __init__(self, dim, heads=4, dim_head=32):super().__init__()self.scale = dim_head ** -0.5self.heads = headshidden_dim = dim_head * headsself.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, pad_mode='valid', has_bias=False)self.to_out = nn.SequentialCell(nn.Conv2d(hidden_dim, dim, 1, pad_mode='valid', has_bias=True),LayerNorm(dim))self.map = ops.Map()self.partial = ops.Partial()def construct(self, x):b, _, h, w = x.shapeqkv = self.to_qkv(x).chunk(3, 1)q, k, v = self.map(self.partial(rearrange, self.heads), qkv)q = ops.softmax(q, -2)k = ops.softmax(k, -1)q = q * self.scalev = v / (h * w)# 'b h d n, b h e n -> b h d e'context = ops.bmm(k, v.swapaxes(2, 3))# 'b h d e, b h d n -> b h e n'out = ops.bmm(context.swapaxes(2, 3), q)out = out.reshape((b, -1, h, w))return self.to_out(out)
组归一化
DDPM作者将U-Net的卷积/注意层与群归一化(Wu et al., 2018)。下面,我们定义一个PreNorm
类,将用于在注意层之前应用groupnorm。
class PreNorm(nn.Cell):def __init__(self, dim, fn):super().__init__()self.fn = fnself.norm = nn.GroupNorm(1, dim)def construct(self, x):x = self.norm(x)return self.fn(x)
条件U-Net
我们已经定义了所有的构建块(位置嵌入、ResNet/ConvNeXT块、Attention和组归一化),现在需要定义整个神经网络了。请记住,网络 𝜖𝜃(𝐱𝑡,𝑡)ϵθ(xt,t) 的工作是接收一批噪声图像+噪声水平,并输出添加到输入中的噪声。
更具体的: 网络获取了一批(batch_size, num_channels, height, width)
形状的噪声图像和一批(batch_size, 1)
形状的噪音水平作为输入,并返回(batch_size, num_channels, height, width)
形状的张量。
网络构建过程如下:
-
首先,将卷积层应用于噪声图像批上,并计算噪声水平的位置
-
接下来,应用一系列下采样级。每个下采样阶段由2个ResNet/ConvNeXT块 + groupnorm + attention + 残差连接 + 一个下采样操作组成
-
在网络的中间,再次应用ResNet或ConvNeXT块,并与attention交织
-
接下来,应用一系列上采样级。每个上采样级由2个ResNet/ConvNeXT块+ groupnorm + attention + 残差连接 + 一个上采样操作组成
-
最后,应用ResNet/ConvNeXT块,然后应用卷积层
最终,神经网络将层堆叠起来,就像它们是乐高积木一样(但重要的是了解它们是如何工作的)
class Unet(nn.Cell):def __init__(self,dim,init_dim=None,out_dim=None,dim_mults=(1, 2, 4, 8),channels=3,with_time_emb=True,convnext_mult=2,):super().__init__()self.channels = channelsinit_dim = default(init_dim, dim // 3 * 2)self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3, pad_mode="pad", has_bias=True)dims = [init_dim, *map(lambda m: dim * m, dim_mults)]in_out = list(zip(dims[:-1], dims[1:]))block_klass = partial(ConvNextBlock, mult=convnext_mult)if with_time_emb:time_dim = dim * 4self.time_mlp = nn.SequentialCell(SinusoidalPositionEmbeddings(dim),nn.Dense(dim, time_dim),nn.GELU(),nn.Dense(time_dim, time_dim),)else:time_dim = Noneself.time_mlp = Noneself.downs = nn.CellList([])self.ups = nn.CellList([])num_resolutions = len(in_out)for ind, (dim_in, dim_out) in enumerate(in_out):is_last = ind >= (num_resolutions - 1)self.downs.append(nn.CellList([block_klass(dim_in, dim_out, time_emb_dim=time_dim),block_klass(dim_out, dim_out, time_emb_dim=time_dim),Residual(PreNorm(dim_out, LinearAttention(dim_out))),Downsample(dim_out) if not is_last else nn.Identity(),]))mid_dim = dims[-1]self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):is_last = ind >= (num_resolutions - 1)self.ups.append(nn.CellList([block_klass(dim_out * 2, dim_in, time_emb_dim=time_dim),block_klass(dim_in, dim_in, time_emb_dim=time_dim),Residual(PreNorm(dim_in, LinearAttention(dim_in))),Upsample(dim_in) if not is_last else nn.Identity(),]))out_dim = default(out_dim, channels)self.final_conv = nn.SequentialCell(block_klass(dim, dim), nn.Conv2d(dim, out_dim, 1))def construct(self, x, time):x = self.init_conv(x)t = self.time_mlp(time) if exists(self.time_mlp) else Noneh = []for block1, block2, attn, downsample in self.downs:x = block1(x, t)x = block2(x, t)x = attn(x)h.append(x)x = downsample(x)x = self.mid_block1(x, t)x = self.mid_attn(x)x = self.mid_block2(x, t)len_h = len(h) - 1for block1, block2, attn, upsample in self.ups:x = ops.concat((x, h[len_h]), 1)len_h -= 1x = block1(x, t)x = block2(x, t)x = attn(x)x = upsample(x)return self.final_conv(x)
正向扩散
我们已经知道正向扩散过程在多个时间步长𝑇T中,从实际分布逐渐向图像添加噪声,根据差异计划进行正向扩散。最初的DDPM作者采用了线性时间表:
-
我们将正向过程方差设置为常数,从𝛽1=10−4β1=10−4线性增加到𝛽𝑇=0.02βT=0.02。
-
但是,它在(Nichol et al., 2021)中表明,当使用余弦调度时,可以获得更好的结果。
下面,我们定义了𝑇T时间步的时间表。
def linear_beta_schedule(timesteps):beta_start = 0.0001beta_end = 0.02return np.linspace(beta_start, beta_end, timesteps).astype(np.float32)
首先,让我们使用T=200 时间步长的线性计划,并定义我们需要的 βt 中的各种变量,例如方差 α¯t 的累积乘积。下面的每个变量都只是一维张量,存储从 t 到 T 的值。重要的是,我们还定义了extract
函数,它将允许我们提取一批适当的 t 索引。
# 扩散200步
timesteps = 200# 定义 beta schedule
betas = linear_beta_schedule(timesteps=timesteps)# 定义 alphas
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.pad(alphas_cumprod[:-1], (1, 0), constant_values=1)sqrt_recip_alphas = Tensor(np.sqrt(1. / alphas))
sqrt_alphas_cumprod = Tensor(np.sqrt(alphas_cumprod))
sqrt_one_minus_alphas_cumprod = Tensor(np.sqrt(1. - alphas_cumprod))# 计算 q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)p2_loss_weight = (1 + alphas_cumprod / (1 - alphas_cumprod)) ** -0.
p2_loss_weight = Tensor(p2_loss_weight)def extract(a, t, x_shape):b = t.shape[0]out = Tensor(a).gather(t, -1)return out.reshape(b, *((1,) * (len(x_shape) - 1)))
# 下载猫猫图像
url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip'
path = download(url, './', kind="zip", replace=True)
from PIL import Imageimage = Image.open('./image_cat/jpg/000000039769.jpg')
base_width = 160
image = image.resize((base_width, int(float(image.size[1]) * float(base_width / float(image.size[0])))))
image.show()
噪声被添加到mindspore张量中,而不是Pillow图像。我们将首先定义图像转换,允许我们从PIL图像转换到mindspore张量(我们可以在其上添加噪声),反之亦然。
这些转换相当简单:我们首先通过除以255来标准化图像(使它们在 [0,1]范围内),然后确保它们在 [−1,1]范围内。DPPM论文中有介绍到:
假设图像数据由 {0,1,...,255} 中的整数组成,线性缩放为 [−1,1], 这确保了神经网络反向过程在从标准正常先验 𝑝(𝐱𝑇)开始的一致缩放输入上运行。
from mindspore.dataset import ImageFolderDatasetimage_size = 128
transforms = [Resize(image_size, Inter.BILINEAR),CenterCrop(image_size),ToTensor(),lambda t: (t * 2) - 1
]path = './image_cat'
dataset = ImageFolderDataset(dataset_dir=path, num_parallel_workers=cpu_count(),extensions=['.jpg', '.jpeg', '.png', '.tiff'],num_shards=1, shard_id=0, shuffle=False, decode=True)
dataset = dataset.project('image')
transforms.insert(1, RandomHorizontalFlip())
dataset_1 = dataset.map(transforms, 'image')
dataset_2 = dataset_1.batch(1, drop_remainder=True)
x_start = next(dataset_2.create_tuple_iterator())[0]
print(x_start.shape)
我们还定义了反向变换,它接收一个包含 [−1,1][−1,1] 中的张量,并将它们转回 PIL 图像:
import numpy as npreverse_transform = [lambda t: (t + 1) / 2,lambda t: ops.permute(t, (1, 2, 0)), # CHW to HWClambda t: t * 255.,lambda t: t.asnumpy().astype(np.uint8),ToPIL()
]def compose(transform, x):for d in transform:x = d(x)return x
让我们验证一下:
reverse_image = compose(reverse_transform, x_start[0])
reverse_image.show()
我们现在可以定义前向扩散过程,如本文所示:
def q_sample(x_start, t, noise=None):if noise is None:noise = randn_like(x_start)return (extract(sqrt_alphas_cumprod, t, x_start.shape) * x_start +extract(sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
让我们在特定的时间步长上测试它:
def get_noisy_image(x_start, t):# 添加噪音x_noisy = q_sample(x_start, t=t)# 转换为 PIL 图像noisy_image = compose(reverse_transform, x_noisy[0])return noisy_image# 设置 time step
t = Tensor([40])
noisy_image = get_noisy_image(x_start, t)
print(noisy_image)
noisy_image.show()
让我们为不同的时间步骤可视化此情况:
import matplotlib.pyplot as pltdef plot(imgs, with_orig=False, row_title=None, **imshow_kwargs):if not isinstance(imgs[0], list):imgs = [imgs]num_rows = len(imgs)num_cols = len(imgs[0]) + with_orig_, axs = plt.subplots(figsize=(200, 200), nrows=num_rows, ncols=num_cols, squeeze=False)for row_idx, row in enumerate(imgs):row = [image] + row if with_orig else rowfor col_idx, img in enumerate(row):ax = axs[row_idx, col_idx]ax.imshow(np.asarray(img), **imshow_kwargs)ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])if with_orig:axs[0, 0].set(title='Original image')axs[0, 0].title.set_size(8)if row_title is not None:for row_idx in range(num_rows):axs[row_idx, 0].set(ylabel=row_title[row_idx])plt.tight_layout()plot([get_noisy_image(x_start, Tensor([t])) for t in [0, 50, 100, 150, 199]])
这意味着我们现在可以定义给定模型的损失函数,如下所示:
def p_losses(unet_model, x_start, t, noise=None):if noise is None:noise = randn_like(x_start)x_noisy = q_sample(x_start=x_start, t=t, noise=noise)predicted_noise = unet_model(x_noisy, t)loss = nn.SmoothL1Loss()(noise, predicted_noise)# todoloss = loss.reshape(loss.shape[0], -1)loss = loss * extract(p2_loss_weight, t, loss.shape)return loss.mean()
denoise_model
将是我们上面定义的U-Net。我们将在真实噪声和预测噪声之间使用Huber损失。
数据准备与处理
在这里我们定义一个正则数据集。数据集可以来自简单的真实数据集的图像组成,如Fashion-MNIST、CIFAR-10或ImageNet,其中线性缩放为 [−1,1]。
每个图像的大小都会调整为相同的大小。有趣的是,图像也是随机水平翻转的。根据论文内容:我们在CIFAR10的训练中使用了随机水平翻转;我们尝试了有翻转和没有翻转的训练,并发现翻转可以稍微提高样本质量。
本实验我们选用Fashion_MNIST数据集,我们使用download下载并解压Fashion_MNIST数据集到指定路径。此数据集由已经具有相同分辨率的图像组成,即28x28。
# 下载MNIST数据集
url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip'
path = download(url, './', kind="zip", replace=True)
from mindspore.dataset import FashionMnistDatasetimage_size = 28
channels = 1
batch_size = 16fashion_mnist_dataset_dir = "./dataset"
dataset = FashionMnistDataset(dataset_dir=fashion_mnist_dataset_dir, usage="train", num_parallel_workers=cpu_count(), shuffle=True, num_shards=1, shard_id=0)
接下来,我们定义一个transform操作,将在整个数据集上动态应用该操作。该操作应用一些基本的图像预处理:随机水平翻转、重新调整,最后使它们的值在 [−1,1]范围内。
transforms = [RandomHorizontalFlip(),ToTensor(),lambda t: (t * 2) - 1
]dataset = dataset.project('image')
dataset = dataset.shuffle(64)
dataset = dataset.map(transforms, 'image')
dataset = dataset.batch(16, drop_remainder=True)
x = next(dataset.create_dict_iterator())
print(x.keys())
采样
由于我们将在训练期间从模型中采样(以便跟踪进度),我们定义了下面的代码。采样在本文中总结为算法2:
从扩散模型生成新图像是通过反转扩散过程来实现的:我们从𝑇T开始,我们从高斯分布中采样纯噪声,然后使用我们的神经网络逐渐去噪(使用它所学习的条件概率),直到我们最终在时间步𝑡=0结束。如上图所示,我们可以通过使用我们的噪声预测器插入平均值的重新参数化,导出一个降噪程度较低的图像 𝐱𝑡−1xt−1。请注意,方差是提前知道的。
理想情况下,我们最终会得到一个看起来像是来自真实数据分布的图像。
下面的代码实现了这一点。
def p_sample(model, x, t, t_index):betas_t = extract(betas, t, x.shape)sqrt_one_minus_alphas_cumprod_t = extract(sqrt_one_minus_alphas_cumprod, t, x.shape)sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, x.shape)model_mean = sqrt_recip_alphas_t * (x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t)if t_index == 0:return model_meanposterior_variance_t = extract(posterior_variance, t, x.shape)noise = randn_like(x)return model_mean + ops.sqrt(posterior_variance_t) * noisedef p_sample_loop(model, shape):b = shape[0]# 从纯噪声开始img = randn(shape, dtype=None)imgs = []for i in tqdm(reversed(range(0, timesteps)), desc='sampling loop time step', total=timesteps):img = p_sample(model, img, ms.numpy.full((b,), i, dtype=mstype.int32), i)imgs.append(img.asnumpy())return imgsdef sample(model, image_size, batch_size=16, channels=3):return p_sample_loop(model, shape=(batch_size, channels, image_size, image_size))
请注意,上面的代码是原始实现的简化版本。
训练过程
下面,我们开始训练吧!
# 定义动态学习率
lr = nn.cosine_decay_lr(min_lr=1e-7, max_lr=1e-4, total_step=10*3750, step_per_epoch=3750, decay_epoch=10)# 定义 Unet模型
unet_model = Unet(dim=image_size,channels=channels,dim_mults=(1, 2, 4,)
)name_list = []
for (name, par) in list(unet_model.parameters_and_names()):name_list.append(name)
i = 0
for item in list(unet_model.trainable_params()):item.name = name_list[i]i += 1# 定义优化器
optimizer = nn.Adam(unet_model.trainable_params(), learning_rate=lr)
loss_scaler = DynamicLossScaler(65536, 2, 1000)# 定义前向过程
def forward_fn(data, t, noise=None):loss = p_losses(unet_model, data, t, noise)return loss# 计算梯度
grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=False)# 梯度更新
def train_step(data, t, noise):loss, grads = grad_fn(data, t, noise)optimizer(grads)return loss
import time# 由于时间原因,epochs设置为1,可根据需求进行调整
epochs = 1for epoch in range(epochs):begin_time = time.time()for step, batch in enumerate(dataset.create_tuple_iterator()):unet_model.set_train()batch_size = batch[0].shape[0]t = randint(0, timesteps, (batch_size,), dtype=ms.int32)noise = randn_like(batch[0])loss = train_step(batch[0], t, noise)if step % 500 == 0:print(" epoch: ", epoch, " step: ", step, " Loss: ", loss)end_time = time.time()times = end_time - begin_timeprint("training time:", times, "s")# 展示随机采样效果unet_model.set_train(False)samples = sample(unet_model, image_size=image_size, batch_size=64, channels=channels)plt.imshow(samples[-1][5].reshape(image_size, image_size, channels), cmap="gray")
print("Training Success!")
推理过程(从模型中采样)
要从模型中采样,我们可以只使用上面定义的采样函数:
# 采样64个图片
unet_model.set_train(False)
samples = sample(unet_model, image_size=image_size, batch_size=64, channels=channels)# 展示一个随机效果
random_index = 5
plt.imshow(samples[-1][random_index].reshape(image_size, image_size, channels), cmap="gray")
可以看到这个模型能产生一件衣服!
请注意,我们训练的数据集分辨率相当低(28x28)。
我们还可以创建去噪过程的gif:
import matplotlib.animation as animationrandom_index = 53fig = plt.figure()
ims = []
for i in range(timesteps):im = plt.imshow(samples[i][random_index].reshape(image_size, image_size, channels), cmap="gray", animated=True)ims.append([im])animate = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=100)
animate.save('diffusion.gif')
plt.show()
总结
请注意,DDPM论文表明扩散模型是(非)条件图像有希望生成的方向。自那以后,diffusion得到了(极大的)改进,最明显的是文本条件图像生成。下面,我们列出了一些重要的(但远非详尽无遗的)后续工作:
-
改进的去噪扩散概率模型(Nichol et al., 2021):发现学习条件分布的方差(除平均值外)有助于提高性能
-
用于高保真图像生成的级联扩散模型([Ho et al., 2021):引入级联扩散,它包括多个扩散模型的流水线,这些模型生成分辨率提高的图像,用于高保真图像合成
-
扩散模型在图像合成上击败了GANs(Dhariwal et al., 2021):表明扩散模型通过改进U-Net体系结构以及引入分类器指导,可以获得优于当前最先进的生成模型的图像样本质量
-
无分类器扩散指南([Ho et al., 2021):表明通过使用单个神经网络联合训练条件和无条件扩散模型,不需要分类器来指导扩散模型
-
具有CLIP Latents (DALL-E 2) 的分层文本条件图像生成 (Ramesh et al., 2022):在将文本标题转换为CLIP图像嵌入之前使用,然后扩散模型将其解码为图像
-
具有深度语言理解的真实文本到图像扩散模型(ImageGen)(Saharia et al., 2022):表明将大型预训练语言模型(例如T5)与级联扩散结合起来,对于文本到图像的合成很有效
请注意,此列表仅包括在撰写本文,即2022年6月7日之前的重要作品。
目前,扩散模型的主要(也许唯一)缺点是它们需要多次正向传递来生成图像(对于像GAN这样的生成模型来说,情况并非如此)。然而,有正在进行中的研究表明只需要10个去噪步骤就能实现高保真生成。
最后打卡今天的学习时间
心得
通过今天的学习我对Diffusion扩散模型有了更深入的了解。扩散模型在机器学习领域中扮演着重要角色,尤其在图像生成和风格迁移中展现出其独特的魅力。通过学习,我认识到了扩散过程的基本原理,以及如何利用这一过程来生成高质量的图像。这种模型的创新之处在于它能够模拟数据的生成过程,从而在保持多样性的同时,生成更加逼真的结果。我期待将这些知识应用到实际项目中,以解决更复杂的问题
DCGAN生成漫画头像
GAN基础原理
这部分原理介绍参考GAN图像生成。
DCGAN原理
DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adversarial Networks)是GAN的直接扩展。不同之处在于,DCGAN会分别在判别器和生成器中使用卷积和转置卷积层。
它最早由Radford等人在论文Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks中进行描述。判别器由分层的卷积层、BatchNorm层和LeakyReLU激活层组成。输入是3x64x64的图像,输出是该图像为真图像的概率。生成器则是由转置卷积层、BatchNorm层和ReLU激活层组成。输入是标准正态分布中提取出的隐向量𝑧z,输出是3x64x64的RGB图像。
本教程将使用动漫头像数据集来训练一个生成式对抗网络,接着使用该网络生成动漫头像图片。
数据准备与处理
首先我们将数据集下载到指定目录下并解压。示例代码如下:
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14from download import downloadurl = "https://download.mindspore.cn/dataset/Faces/faces.zip"path = download(url, "./faces", kind="zip", replace=True)
数据处理
首先为执行过程定义一些输入:
batch_size = 128 # 批量大小
image_size = 64 # 训练图像空间大小
nc = 3 # 图像彩色通道数
nz = 100 # 隐向量的长度
ngf = 64 # 特征图在生成器中的大小
ndf = 64 # 特征图在判别器中的大小
num_epochs = 3 # 训练周期数
lr = 0.0002 # 学习率
beta1 = 0.5 # Adam优化器的beta1超参数
定义create_dataset_imagenet
函数对数据进行处理和增强操作。
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.vision as visiondef create_dataset_imagenet(dataset_path):"""数据加载"""dataset = ds.ImageFolderDataset(dataset_path,num_parallel_workers=4,shuffle=True,decode=True)# 数据增强操作transforms = [vision.Resize(image_size),vision.CenterCrop(image_size),vision.HWC2CHW(),lambda x: ((x / 255).astype("float32"))]# 数据映射操作dataset = dataset.project('image')dataset = dataset.map(transforms, 'image')# 批量操作dataset = dataset.batch(batch_size)return datasetdataset = create_dataset_imagenet('./faces')
通过create_dict_iterator
函数将数据转换成字典迭代器,然后使用matplotlib
模块可视化部分训练数据。
import matplotlib.pyplot as pltdef plot_data(data):# 可视化部分训练数据plt.figure(figsize=(10, 3), dpi=140)for i, image in enumerate(data[0][:30], 1):plt.subplot(3, 10, i)plt.axis("off")plt.imshow(image.transpose(1, 2, 0))plt.show()sample_data = next(dataset.create_tuple_iterator(output_numpy=True))
plot_data(sample_data)
构造网络
当处理完数据后,就可以来进行网络的搭建了。按照DCGAN论文中的描述,所有模型权重均应从mean
为0,sigma
为0.02的正态分布中随机初始化。
生成器
生成器G
的功能是将隐向量z
映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的 RGB 图像。在实践场景中,该功能是通过一系列Conv2dTranspose
转置卷积层来完成的,每个层都与BatchNorm2d
层和ReLu
激活层配对,输出数据会经过tanh
函数,使其返回[-1,1]
的数据范围内。
DCGAN论文生成图像如下所示:
图片来源:Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks.
我们通过输入部分中设置的nz
、ngf
和nc
来影响代码中的生成器结构。nz
是隐向量z
的长度,ngf
与通过生成器传播的特征图的大小有关,nc
是输出图像中的通道数。
以下是生成器的代码实现:
import mindspore as ms
from mindspore import nn, ops
from mindspore.common.initializer import Normalweight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)class Generator(nn.Cell):"""DCGAN网络生成器"""def __init__(self):super(Generator, self).__init__()self.generator = nn.SequentialCell(nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),nn.Tanh())def construct(self, x):return self.generator(x)generator = Generator()
判别器¶
如前所述,判别器D
是一个二分类网络模型,输出判定该图像为真实图的概率。通过一系列的Conv2d
、BatchNorm2d
和LeakyReLU
层对其进行处理,最后通过Sigmoid
激活函数得到最终概率。
DCGAN论文提到,使用卷积而不是通过池化来进行下采样是一个好方法,因为它可以让网络学习自己的池化特征。
判别器的代码实现如下:
class Discriminator(nn.Cell):"""DCGAN网络判别器"""def __init__(self):super(Discriminator, self).__init__()self.discriminator = nn.SequentialCell(nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),)self.adv_layer = nn.Sigmoid()def construct(self, x):out = self.discriminator(x)out = out.reshape(out.shape[0], -1)return self.adv_layer(out)discriminator = Discriminator()
模型训练
损失函数
当定义了D
和G
后,接下来将使用MindSpore中定义的二进制交叉熵损失函数BCELoss。
# 定义损失函数
adversarial_loss = nn.BCELoss(reduction='mean')
优化器
这里设置了两个单独的优化器,一个用于D
,另一个用于G
。这两个都是lr = 0.0002
和beta1 = 0.5
的Adam优化器。
# 为生成器和判别器设置优化器
optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G = nn.Adam(generator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G.update_parameters_name('optim_g.')
optimizer_D.update_parameters_name('optim_d.')
训练模型
训练分为两个主要部分:训练判别器和训练生成器。
-
训练判别器
训练判别器的目的是最大程度地提高判别图像真伪的概率。按照Goodfellow的方法,是希望通过提高其随机梯度来更新判别器,所以我们要最大化𝑙𝑜𝑔𝐷(𝑥)+𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))logD(x)+log(1−D(G(z))的值。
-
训练生成器
如DCGAN论文所述,我们希望通过最小化𝑙𝑜𝑔(1−𝐷(𝐺(𝑧)))log(1−D(G(z)))来训练生成器,以产生更好的虚假图像。
在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计,将fixed_noise
批量推送到生成器中,以直观地跟踪G
的训练进度。
下面实现模型训练正向逻辑:
def generator_forward(real_imgs, valid):# 将噪声采样为发生器的输入z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1))# 生成一批图像gen_imgs = generator(z)# 损失衡量发生器绕过判别器的能力g_loss = adversarial_loss(discriminator(gen_imgs), valid)return g_loss, gen_imgsdef discriminator_forward(real_imgs, gen_imgs, valid, fake):# 衡量鉴别器从生成的样本中对真实样本进行分类的能力real_loss = adversarial_loss(discriminator(real_imgs), valid)fake_loss = adversarial_loss(discriminator(gen_imgs), fake)d_loss = (real_loss + fake_loss) / 2return d_lossgrad_generator_fn = ms.value_and_grad(generator_forward, None,optimizer_G.parameters,has_aux=True)
grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None,optimizer_D.parameters)@ms.jit
def train_step(imgs):valid = ops.ones((imgs.shape[0], 1), mindspore.float32)fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)(g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid)optimizer_G(g_grads)d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake)optimizer_D(d_grads)return g_loss, d_loss, gen_imgs
循环训练网络,每经过50次迭代,就收集生成器和判别器的损失,以便于后面绘制训练过程中损失函数的图像。
import mindsporeG_losses = []
D_losses = []
image_list = []total = dataset.get_dataset_size()
for epoch in range(num_epochs):generator.set_train()discriminator.set_train()# 为每轮训练读入数据for i, (imgs, ) in enumerate(dataset.create_tuple_iterator()):g_loss, d_loss, gen_imgs = train_step(imgs)if i % 100 == 0 or i == total - 1:# 输出训练记录print('[%2d/%d][%3d/%d] Loss_D:%7.4f Loss_G:%7.4f' % (epoch + 1, num_epochs, i + 1, total, d_loss.asnumpy(), g_loss.asnumpy()))D_losses.append(d_loss.asnumpy())G_losses.append(g_loss.asnumpy())# 每个epoch结束后,使用生成器生成一组图片generator.set_train(False)fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))img = generator(fixed_noise)image_list.append(img.transpose(0, 2, 3, 1).asnumpy())# 保存网络模型参数为ckpt文件mindspore.save_checkpoint(generator, "./generator.ckpt")mindspore.save_checkpoint(discriminator, "./discriminator.ckpt")
结果展示
运行下面代码,描绘D
和G
损失与训练迭代的关系图:
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G", color='blue')
plt.plot(D_losses, label="D", color='orange')
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()
可视化训练过程中通过隐向量fixed_noise
生成的图像。
import matplotlib.pyplot as plt
import matplotlib.animation as animationdef showGif(image_list):show_list = []fig = plt.figure(figsize=(8, 3), dpi=120)for epoch in range(len(image_list)):images = []for i in range(3):row = np.concatenate((image_list[epoch][i * 8:(i + 1) * 8]), axis=1)images.append(row)img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)plt.axis("off")show_list.append([plt.imshow(img)])ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)ani.save('./dcgan.gif', writer='pillow', fps=1)showGif(image_list)
从上面的图像可以看出,随着训练次数的增多,图像质量也越来越好。如果增大训练周期数,当num_epochs
达到50以上时,生成的动漫头像图片与数据集中的较为相似,下面我们通过加载生成器网络模型参数文件来生成图像,代码如下:
# 从文件中获取模型参数并加载到网络中
mindspore.load_checkpoint("./generator.ckpt", generator)fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
img64 = generator(fixed_noise).transpose(0, 2, 3, 1).asnumpy()fig = plt.figure(figsize=(8, 3), dpi=120)
images = []
for i in range(3):images.append(np.concatenate((img64[i * 8:(i + 1) * 8]), axis=1))
img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
plt.axis("off")
plt.imshow(img)
plt.show()
最后打卡今天的学习时间
心得
我深入探索了DCGAN生成漫画头像的技术。DCGAN作为GAN的一种变体,通过巧妙地引入卷积和转置卷积层,极大地提升了图像生成的质量和效率。学习DCGAN原理,我了解到判别器和生成器的构建方式,以及它们如何通过对抗过程学习生成逼真的图像。特别是BatchNorm层和ReLU激活层的运用,为生成图像的多样性和稳定性提供了保障
相关文章:

昇思25天学习打卡营第16天|Diffusion扩散模型,DCGAN生成漫画头像
Diffusion扩散模型 关于扩散模型(Diffusion Models)有很多种理解,本文的介绍是基于denoising diffusion probabilistic model (DDPM),DDPM已经在(无)条件图像/音频/视频生成领域取得…...

【吊打面试官系列-Dubbo面试题】Dubbo SPI 和 Java SPI 区别?
大家好,我是锋哥。今天分享关于 【Dubbo SPI 和 Java SPI 区别?】面试题,希望对大家有帮助; Dubbo SPI 和 Java SPI 区别? JDK SPI JDK 标准的 SPI 会一次性加载所有的扩展实现,如果有的扩展吃实话很耗时&…...

7.31 Day13 网络散记(http,https...)
http固定对应80端口 https固定对应443端口...

LumaLabs 用例和应用分析
介绍 LumaLabs AI 是一家尖端技术公司,通过创新使用人工智能 (AI) 和神经渲染技术,彻底改变了 3D 内容创作领域。本报告深入探讨了 LumaLabs AI 的各种用例和应用,重点介绍了其在不同行业中的能力、优势和潜在影响。 LumaLabs AI 概述 LumaL…...

leetcode88.合并两个有序数组(简单题!)
思路:合并两个数组,再进行排序(利用快速排序) class Solution(object):def quicksort(self, num, i, j):if i>j: # 跳出循环的条件要出来return left iright jtemp num[i]while left < right:while left < right and…...

鸿蒙(HarmonyOS)DatePicker+TimePicker时间选择控件
一、操作环境 操作系统: Windows 11 专业版、IDE:DevEco Studio 3.1.1 Release、SDK:HarmonyOS 3.1.0(API 9) 二、效果图 可实现两种选择方式,可带时分选择,也可不带,使用更加方便。 三、代码 SelectedDateDialog…...

2024年和2025年CFA FRM CAIA ESG自己整理的资料
本人金融女一枚,CFA FRM CAIA ESG已过,研究生学历,职位投资经理。从事金融快5年了,月薪30000,周未双休五险一金。工作很充实也很累,每天失眠,思考了很久,还是决定离职了,…...

AMD第二季度财报:数据中心产品销售激增,接近总收入一半
#### 财报亮点 7月30日,AMD公布了截至6月29日的第二季度财务业绩,利润超过了华尔街的预期。根据TechNews的报道,最值得注意的是,AMD现在近一半的销售额来自于数据中心产品,而非传统的PC芯片、游戏主机或是工业与汽车嵌…...

ThreadLocal详解及ThreadLocal源码分析
提示:ThreadLocal详解、ThreadLocal与synchronized的区别、ThreadLocal的优势、ThreadLocal的内部结构、ThreadLocalMap源码分析、ThreadLocal导致内存泄漏的原因、要避免内存泄漏可以用哪些方式、ThreadLocal怎么解决Hash冲突问题、避免共享的设计模式、ThreadLoca…...

FastGPT、Dify、Coze产品功能对比分析
在当前的人工智能领域,模型接入、应用发布、应用构建、知识库和工作流编排等功能是衡量一个AI平台综合能力的重要指标。本文将对FastGPT、Dify和Coze这三款产品的功能进行详细对比分析,以帮助用户更好地了解它。 订阅模式及市场概况 在订阅模式及市场概…...

【Linux】缓冲区的理解
目录 一、实验现象二、初步认知缓冲区2.1 缓冲区的刷新策略2.2 缓冲区在哪里 三、缓冲区模拟实现四、再次全面理解缓冲区4.1 用户强制刷新缓冲区(fflush/fsync) 一、实验现象 我们先来看一个现象: 在显示器中打印内容时,fprintf先打印出来,w…...

基于单片机的电梯控制系统的设计
摘 要: 本文提出了一种基于单片机的电梯控制系统设计 。 设计以单片机为核心,通过使用和设计新型先进的硬件和控制程序来模拟和控制整个电梯的运行,在使用过程中具有成本低廉、 维护方便、 运行稳定 、 易于操作 、 安全系数高等优点 。 主要设计思路是…...

IP-GUARD文档云备份服务器迁移数据操作说明
一、功能简介 使用文档云备份过程可能出现需要迁移旧数据到新目录的情况(如一开始存储目录设置 不合理,之后变更存储目录),下面介绍迁移备份数据到新目录的方法,迁移后可正常查看、 下载、删除原备份文件。 二、同一计算机上迁移存储目录 当仅需要将存储目录迁移到同一计…...

linux常用命令ls详细说明
目录 1.ls的基本功能就是显示当前目录的文件和目录 2.ls输出是按照字母顺序排列的 3.默认不显示隐藏内容,加上参数-a可以显示隐藏的文件和文件夹 4.-R参数可以地柜列出当前目录以及它包含的字目录中的文件 5.-l参数辉显示长列表,也可以显示文件更多信…...

Python3网络爬虫开发实战(4)数据的存储
文章目录 一、文本文件存储1. os 文件 mode2. TXT3. JSON4. CSV 二、数据库存储1. SQLAlchemy2. MongoDB3. Redis1) 键操作2) 字符串操作3) 列表操作4) 集合操作5) 有序集合操作6) 散列操作 4. Elasticsearch1) 检索数据:利用 elasticsearch-analysis-ik 进行分词2)…...

《C++基础入门与实战进阶》专栏介绍
🚀 前言 本文是《C基础入门与实战进阶》专栏的说明贴(点击链接,跳转到专栏主页,欢迎订阅,持续更新…)。 专栏介绍:以多年的开发实战为基础,总结并讲解一些的C/C基础与项目实战进阶内…...

每天一个数据分析题(四百五十)- 数据清洗
数据在真正被使用前需进行必要的清洗,使脏数据变为可用数据。下列不属于“脏数据”的是() A. 重复数据 B. 错误数据 C. 交叉数据 D. 缺失数据 数据分析认证考试介绍:点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据…...

昇思25天学习打卡营第XX天|Pix2Pix实现图像转换
Pix2Pix是一种基于条件生成对抗网络(cGAN)的图像转换模型,由Isola等人在2017年提出。它能够实现多种图像到图像的转换任务,如从草图到彩色图像、从白天到夜晚的场景变换等。与传统专用机器学习方法不同,Pix2Pix提供了一…...

数据结构经典测试题5
1. int main() { char arr[2][4]; strcpy (arr[0],"you"); strcpy (arr[1],"me"); arr[0][3]&; printf("%s \n",arr); return 0; }上述代码输出结果是什么呢? A: you&me B: you C: me D: err 答案为A 因为arr是一个2行4列…...

React Native初次使用遇到的问题
Write By Monkeyfly 以下内容均为原创,如需转载请注明出处。 前提:距离上次写博文已经过去了5年之久,诸多原因导致的,写一篇优质博文确实费时费力,中间有其他更感兴趣的事要做(打游戏、旅游、逛街、看电影…...

2024西安铁一中集训DAY28 ---- 模拟赛(简单dp + 堆,模拟 + 点分治 + 神秘dp)
文章目录 前言时间安排及成绩题解A. 江桥不会做的签到题(简单dp)B. 江桥树上逃(堆,模拟)C. 括号平衡路径(点分治)D. 回到起始顺序(dp,组合数学) 前言 T2好难…...

【论文阅读笔记 + 思考 + 总结】MoMask: Generative Masked Modeling of 3D Human Motions
创新点: VQ-VAE 👉 Residual VQ-VAE,对每个 motion sequence 输出一组 base motion tokens 和 v 组 residual motion tokensbidirectional 的 Masked transformer 用来生成 base motion tokensResidual Transformer 对 residual motion toke…...

Mojo控制语句详解
Mojo 包含几个传统的控制流结构,用于有条件和重复执行代码块。 The if statement Mojo 支持条件代码执行语句。有了它,当给定的布尔表达式计算结果为 时,if您可以有条件地执行缩进的代码块 。True temp_celsius = 25 if temp_celsius > 20:print("It is warm.&quo…...

web安全基础学习
http基础 HTTP(HyperText Transfer Protocol,超文本传输协议)是一种用于分布式、协作式和超媒体信息系统的应用层协议。本文将介绍如何使用HTTP协议,以及在Linux操作系统中如何使用curl工具发起HTTP请求。 一、HTTP特性 无状态…...

天气预报的爬虫内容打印并存储用户操作
系统名称: 基于网络爬虫技术的天气数据查询系统文档作者:清馨创作时间:2024-7-29最新修改时间:2024-7-29最新版本号: 1.0 1.背景描述 该系统将基于目前比较流行的网络爬虫技术,对网站上(NowAPI…...

OrangePi AI Pro 固件升级 —— 让主频从 1.0 GHz 到 1.6 GHz 的巨大升级
前言 OrangePi AI Pro 最近发布了Ascend310B-firmware 固件包,据说升级之后可以将 CPU 主频从 1.0 GHz 提升至 1.6 GHz,据群主大大说,算力也从原本的 8T 提升到了 12T,这波开发板的成长让我非常的 Amazing 啊!下面就来…...

学习大数据DAY27 Linux最终阶段测试
满分:100 得分:72 目录 一选择题(每题 3 分,共计 30 分) 二、编程题(共 70…...

ctr管理containerd基本命令
1. 创建命名空间 创建名为custom的命令空间 ctr ns create custom2. 导入镜像 把镜像导入到刚刚创建的空间 ctr -n custom images improt restfulapi.tar3. 创建容器 创建一个test_api的容器 ctr -n custom run --null-io --net-host -d --mount typebind,src/etc,dst/ho…...

rust 初探 -- 路径(path)
rust 初探 – 路径Path 路径(Path) 目的:为了在 Rust 的模块中找到某个条目,需要使用 路径两种形式: 绝对路径:从 crate root 开始,使用 crate 名或字面值 crate相对路径:从当前模…...

XXE -靶机
XXE靶机 一.扫描端口 进入xxe靶机 1.1然后进入到kali里 使用namp 扫描一下靶机开放端口等信息 1.2扫描他的目录 二 利用获取的信息 进入到 robots.txt 按他给出的信息 去访问xss 是一个登陆界面 admin.php 也是一个登陆界面 我们访问xss登陆界面 随便输 打开burpsuite抓包 发…...