AI Agents(智能代理)教程:如何创建信息检索聊天机器人

AI 代理教程:如何创建信息检索聊天机器人
介绍
在本教程中,我们将指导您使用 AI 代理创建用于信息检索的复杂聊天机器人的过程。探索如何利用 AI 的强大功能构建能够高效地从各种来源检索数据的聊天机器人。
设置环境
我们的计划是使用 AI 代理(LangChain)创建一个聊天机器人,并使用 Chainlit 创建一个简单的 UI。
我们希望我们的聊天机器人能够分两个阶段响应查询:规划和检索。代理应该可以访问维基百科和网络搜索。
准备和依赖
让我们从创建一个新项目开始。我将从创建新目录开始:
mkdir agents-chatbot
cd agents-chatbot
让我们创建虚拟环境并安装依赖项:
python3 -m venv venv# Linux/MacOS
source venv/bin/activate# Windows
venv\Scripts\activate.batpip install langchain chainlit python-dotenv wikipedia duckduckgo-search
现在我们可以创建我们的 app.py 文件(Chainlit 需要名称):
touch app.py
最后一步是导入我们的依赖项:
import osimport chainlit as cl
from dotenv import load_dotenv
from langchain import PromptTemplate
from langchain.agents import AgentType, Tool, initialize_agent
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapperload_dotenv()# OpenAI API key
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
免责声明:我在 .env 文件中定义了我的环境变量,您可以执行相同的操作或在代码中定义秘密。
编码
现在是时候初始化 LLM 和工具了。我将在本教程中使用 GPT-4,但如果您愿意,也可以使用其他模型。我还将使用 DuckDuckGoSearchRun 和 WikipediaAPIWrapper 作为我的工具。
llm = ChatOpenAI(temperature=0, model="gpt-4")search = DuckDuckGoSearchRun()
wikipedia = WikipediaAPIWrapper()# Web Search Tool
search_tool = Tool(name="Web Search",func=search.run,description="A useful tool for searching the Internet to find information on world events, issues, etc. Worth using for general topics. Use precise questions.",
)# Wikipedia Tool
wikipedia_tool = Tool(name="Wikipedia",func=wikipedia.run,description="A useful tool for searching the Internet to find information on world events, issues, etc. Worth using for general topics. Use precise questions.",
)
下一步是准备 PromptTemplates。我会准备两个。一个用于规划过程,一个用于生成最终响应的过程。
prompt = PromptTemplate(template="""Plan: {input}History: {chat_history}Let's think about answer step by step.
If it's information retrieval task, solve it like a professor in particular field.""",input_variables=["input", "chat_history"],
)plan_prompt = PromptTemplate(input_variables=["input", "chat_history"],template="""Prepare plan for task execution. (e.g. retrieve current date to find weather forecast)Tools to use: wikipedia, web searchREMEMBER: Keep in mind that you don't have information about current date, temperature, informations after September 2021. Because of that you need to use tools to find them.Question: {input}History: {chat_history}Output look like this:
'''Question: {input}Execution plan: [execution_plan]Rest of needed information: [rest_of_needed_information]
'''IMPORTANT: if there is no question, or plan is not need (YOU HAVE TO DECIDE!), just populate {input} (pass it as a result). Then output should look like this:
'''input: {input}
'''
""",
)
现在是启动代理和计划链的时候了。此外,我将添加内存,以便它们可以保存有关先前消息的信息。
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)plan_chain = ConversationChain(llm=llm,memory=memory,input_key="input",prompt=plan_prompt,output_key="output",
)# Initialize Agent
agent = initialize_agent(agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,tools=[search_tool, wikipedia_tool],llm=llm,verbose=True, # verbose option is for printing logs (only for development)max_iterations=3,prompt=prompt,memory=memory,
)
UI部分
现在是时候创建 UI 了。我将使用 Chainlit 来实现此目的。我将利用 factory 函数将我们的代理传递给 Chainlit。但在触发 factory 函数之前,Chainlit 使用 run 函数准备将输入传递给模型的管道。我将覆盖它以稍微改变流程。我想首先执行规划,然后生成响应。
@cl.langchain_run
def run(agent, input_str):# Plan executionplan_result = plan_chain.run(input_str)# Agent executionres = agent(plan_result)# Send messagecl.Message(content=res["output"]).send()@cl.langchain_factory
def factory():return agent
好的,我们快完成了。最后一步是运行我们的应用程序!
chainlit run app.py -w # -w flag is for restarting app after each change
结果!
太好了,现在让我们测试一下我们的应用程序。我将通过说“你好”来启动我们的应用程序,然后问它一个问题。让我们看看结果会是什么!

太棒了!正如您最初看到的那样,模型绕过规划,直到收到提示 — 然后,它组织任务并根据预期制定响应!
勇往直前,构建您独特的 AI 代理应用程序,不要错过 6 月 9 日开始的 AI 代理黑客马拉松。通过我们的 AI 教程提升您的知识,并利用 AI 的威力塑造未来!
相关文章:
AI Agents(智能代理)教程:如何创建信息检索聊天机器人
AI 代理教程:如何创建信息检索聊天机器人 介绍 在本教程中,我们将指导您使用 AI 代理创建用于信息检索的复杂聊天机器人的过程。探索如何利用 AI 的强大功能构建能够高效地从各种来源检索数据的聊天机器人。 设置环境 我们的计划是使用 AI 代理&…...
Linux——管理本地用户和组(详细介绍了Linux中用户和组的概念及用法)
目录 一、用户和组概念 (一)、用户的概念 (二)、组的概念 补充组 主要组 二、获取超级用户访问权限 (一)、su 命令和su -命令 ( 二)、sudo命令 三、管理本地用户账户 &…...
Flink-StarRocks详解:第三部分StarRocks分区分桶(第53天)
文章目录 前言2.3 数据分布2.3.1 数据分布概览2.3.1.1 常见的数据分布方式2.3.1.2 StarRocks的数据分布方式2.3.1.3 分区2.3.1.4 分桶 2.3.2 创建分区2.3.2.1 表达式分区2.3.2.1.1 时间函数表达式分区(自v3.1)2.3.2.1.2 列表达式分区(自v3.1&…...
8G内存的Mac够用吗 ?苹果电脑内存满了怎么清理?可以有效地管理和优化你的Mac电脑内存,确保设备运行流畅
嘿,朋友们,让咱们聊聊怎么让我们的Mac小伙伴时刻保持巅峰状态吧!想象一下,每一次点击、每一次滑动,都如同初见时那般丝滑顺畅,是不是超级心动?为了这份持久的畅快体验,我强烈推荐大家…...
【LabVIEW学习篇 - 10】:属性、调用节点
文章目录 属性节点调用节点使用方法一使用方法二案例 练习 属性节点 LabVIEW中的对象(包括控件、VI、应用程序等)都有自己的属性和方法。属性就是对象与生俱来的一些特性,可以理解成它是静态的,如控件的背景颜色,坐标…...
如何在数据埋点中发现和修复数据上报逻辑错误
如何发现和处理数据埋点中的逻辑错误 在大数据分析中,数据埋点是至关重要的一环。然而,当我们遇到数据上报逻辑错误时,该如何应对呢?本文将为你揭示解决这一棘手问题的有效方法。 目录 如何发现和处理数据埋点中的逻辑错误什么是数据上报逻辑错误?如何发现数据上报逻辑错误…...
程序员面试“八股文”:助力成长还是应试枷锁?
程序员面试“八股文”:助力成长还是应试枷锁? 引言 在当今快速迭代的IT行业中,程序员面试作为选拔人才的关键环节,其内容与形式一直备受关注。其中,“八股文”式面试题,作为一类标准化、模式化的问题集合…...
强化学习-alphazero 算法理论
一、算法简介 简单地说,AlphazeroMCTS SL(策略网络价值网络) Selfplay resnet。 其中MCTS指的是蒙特卡洛树搜索,主要用于记录所有访问过的棋盘状态的各种属性,包括该状态访问次数,对该状平均评价分数等。 SL指监督学习算法&…...
使用 Rough.js 创建动态水平条形图
本文由ScriptEcho平台提供技术支持 项目地址:传送门 使用 Rough.js 创建动态可视化网络图 应用场景 Rough.js 是一个 JavaScript 库,它允许开发人员使用毛边风格创建可视化效果。该库适用于各种应用程序,例如: 数据可视化地图…...
Python教程(十):面向对象编程(OOP)
目录 专栏列表前言一、面向对象编程概述1.1 类和对象1.2 继承1.3 多态1.4 封装 二、Python 中的类和对象2.1 定义类2.2 __init__ 函数解释2.3 创建对象 三、继承3.1 基本继承3.2 创建子类对象 四、多态五、封装六. 访问限制七、综合实例结语 专栏列表 Python教程(一…...
CTFHUB-文件上传-文件头检查
开启题目 1.php内容: <?php eval($_POST[cmd]);?> 截屏截一个很小很小的图片,保存为 png 格式,把 1.png 和 1.php 放在同一文件夹,在此目录打开 cmd, 使用以下命令把 1.png 和 1.php 合成为图片马 copy 1.pn…...
c语言数组与指针,字符串与指针,指向函数的指针,malloca动态内存分配
数组与指针 数组: - 数组是一种数据结构,可以存储固定大小的一组相同类型的元素。在内存中,数组的元素是连续存储的。 指针: - 指针是一个变量,用于存储内存地址。指针本身占用内存,用来指向某个数据的地址。 数组与指针的关系…...
代码随想录算法训练营day30 | 452. 用最少数量的箭引爆气球 、435. 无重叠区间、763.划分字母区间
碎碎念:加油 参考:代码随想录 452. 用最少数量的箭引爆气球 题目链接 452. 用最少数量的箭引爆气球 思想 局部最优: 让重叠的气球尽量在一起,用一支弓箭射。 全局最优: 用最少数量的箭引爆气球。 首先对气球进行排…...
如何手动修复DLL丢失?2种手动修复dll文件方法
DLL(动态链接库)文件是Windows操作系统中非常重要的组成部分,它们包含了程序运行所需的代码和数据。然而,由于各种原因,如系统更新、软件卸载不当或病毒感染,DLL文件有时会丢失或损坏,导致程序无…...
Node.js(2)——压缩前端html
需求:把回车符(\r)和换行符(\n)去掉后,写入到新的html文件中 步骤: 读取源html文件内容正则替换字符串写入到新的html文件中 示例: 获取html文件中的内容并检查(同时…...
堆的实现-向上调整算法-向下调整算法-堆排序-TopK问题 C语言
堆的实现与堆排序及TopK问题的C语言代码 下面是详细的堆实现,包括向上调整、向下调整算法,以及堆排序和解决TopK问题的完整C语言示例代码。 1. 堆的实现 首先,定义堆的数据结构: #include <stdio.h> #include <stdli…...
【C++BFS】1466. 重新规划路线
本文涉及知识点 CBFS算法 LeetCode1466. 重新规划路线 n 座城市,从 0 到 n-1 编号,其间共有 n-1 条路线。因此,要想在两座不同城市之间旅行只有唯一一条路线可供选择(路线网形成一颗树)。去年,交通运输部…...
服务器并发模型
服务器: 单循环服务器:服务器在同一时刻只能响应一个客户端的请求 并发服务器模型:服务器在同一时刻可以响应多个客户端的请求 UDP:无连接 TCP:有连接 1.多进程 资源空间消耗大 效率低 2.多线程 相…...
Chapter 23 数据可视化——地图
欢迎大家订阅【Python从入门到精通】专栏,一起探索Python的无限可能! 文章目录 前言一、基础绘图二、视觉映射三、案例分析 前言 随着地理信息系统(GIS)技术的迅猛发展和大数据时代的到来,数据可视化已经成为分析和理…...
Linux笔记 --- 组合数据类型
结构体 简单的定义结构体的方法 struct student {char name;int age;float score; };//使用student模板创建两个结构体变量 struct student Jack,Rose; 结构体中可以存放除了函数以外的任何数据类型的数据,在创建结构体时student被称为结构体模板名称,…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
