当前位置: 首页 > news >正文

OpenCV—二值化Threshold()、adaptiveThreshold()

cv2.threshold()

  • c++:double cv::threshold ( InputArray src,
    OutputArray dst,
    double thresh,
    double maxval,
    int type
    ) (注:源图片, 目标图, 阈值, 填充色, 阈值类型)
python:cv.threshold(src,thresh, maxval, type[, dst])
src:源图片
thresh:阈值,取值范围0~255
maxval:填充色,取值范围0~255
type:阈值类型
  • type
    • 从上到下可以使用0、1、2、3、4、7、8、16表示,因为有人习惯使用数字表示下面类型,故列出。
#将图像中小于100的置为0,大于100的置为255
temp = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY)

cv2.adaptiveThreshold()

  • python:dst = cv.adaptiveThreshold( src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst])
    • maxValue:赋给满足条件的像素非零值
    • adaptiveMethod:自适应阈值算法
      • ADAPTIVE_THRESH_MEAN_C :(x,y)-C 的blockSize×blockSize内的均值
      • ADAPTIVE_THRESH_GAUSSIAN_C :(x,y)-C的blockSize×blockSize邻域的加权和(高斯窗口的互相关)
    • thresholdType:阈值类型,必须为THRESH_BINARY或THRESH_BINARY_INV
    • BlockSize:用于计算像素阈值的像素邻域大小:3,5,7,等。
    • C:从平均值或加权平均值中减去的常数。通常,它是正的,但也可能是零或负的。
# 例子mask = cv2.adaptiveThreshold(sgray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV,55,25)

至此大致了解了Opencv中二值化函数相关介绍和参数,具体还需要在实践中不断调整合适的参数以适应自己的任务。

相关文章:

OpenCV—二值化Threshold()、adaptiveThreshold()

cv2.threshold() c:double cv::threshold ( InputArray src, OutputArray dst, double thresh, double maxval, int type ) (注:源图片, 目标图, 阈值, 填充色, 阈值类型) python:cv.threshold(src,thresh, maxval, type[, dst]) src:源图片…...

第二天:java面向对象编程(OOP)

第二天:java面向对象编程(OOP) 1. 深入理解OOP四大特性 封装(Encapsulation):学习如何将数据(属性)和操作数据的方法(行为)组合成一个独立的单元&#xff0…...

Selenium + Python 自动化测试07(滑块的操作方法)

我们的目标是:按照这一套资料学习下来,大家可以独立完成自动化测试的任务。 本篇文章主要讲述如何操作滑块。 目前很多系统登录或者注册的页面都有滑块相关的验证,selenium 中对滑块的基本操作采用了元素的拖曳的方式。需要用到Actiochains模…...

三防平板满足多样化定制为工业领域打造硬件解决方案

在当今工业领域,数字化、智能化的发展趋势日益显著,对于高效、可靠且适应各种复杂环境的硬件设备需求不断增长。三防平板作为一种具有坚固耐用、防水防尘防摔特性的工业级设备,正以其出色的性能和多样化的定制能力,为不同行业的应…...

pytorch,用lenet5识别cifar10数据集(训练+测试+单张图片识别)

目录 LeNet-5 LeNet-5 结构 CIFAR-10 pytorch实现 lenet模型 训练模型 1.导入数据 2.训练模型 3.测试模型 测试单张图片 代码 运行结果 LeNet-5 LeNet-5 是由 Yann LeCun 等人在 1998 年提出的一种经典卷积神经网络(CNN)模型,主要…...

Word卡顿的处理方法

1. 检查和关闭后台程序 关闭不必要的后台程序,释放系统资源。使用任务管理器(Ctrl + Shift + Esc)查看占用CPU和内存较高的应用,并关闭它们。2. 更新Microsoft Office 确保你的Microsoft Office软件是最新版本。新版本通常修复了已知的性能问题。打开Word,点击文件 > 账…...

在 Linux上常见的10大压缩格式解压命令和它们对应的压缩格式

文章目录 前言一、解压 .zip 文件二、解压 .tar.gz 或 .tgz 文件三、解压 .tar 文件四、解压 .tar.bz2 文件五、解压 .tar.xz 文件六、解压 .gz 文件七、解压 .bz2 文件八、解压 .xz 文件九、解压 .7z 文件十、解压 .rar 文件总结 前言 Linux 命令可以解压不同格式的压缩文件。…...

【数据结构】三、栈和队列:6.链队列、双端队列、队列的应用(树的层次遍历、广度优先BFS、先来先服务FCFS)

文章目录 2.链队列2.1初始化(带头结点)不带头结点 2.2入队(带头结点)2.3出队(带头结点)❗2.4链队列c实例 3.双端队列考点:输出序列合法性栈双端队列 队列的应用1.树的层次遍历2.图的广度优先遍历3.操作系统…...

技术速递|使用 Native Library Interop 为 .NET MAUI 创建绑定

作者:Rachel Kang 排版:Alan Wang 在当今的应用开发领域,通过利用本机功能来扩展 .NET 应用程序的能力非常宝贵。.NET MAUI 处理程序架构使开发人员能够使用 .NET 代码直接操作本机控件,甚至允许无缝创建跨平台自定义控件。然而&a…...

Linux笔记 --- 标准IO

系统IO的最大特点一个是更具通用性,不管是普通文件、管道文件、设备节点文件、接字文件等等都可以使用,另一个是他的简约性,对文件内数据的读写在任何情况下都是带任何格式的,而且数据的读写也都没有经过任何缓冲处理,…...

洛谷:B3625 迷宫寻路

迷宫寻路 题目描述 机器猫被困在一个矩形迷宫里。 迷宫可以视为一个 n m n\times m nm 矩阵,每个位置要么是空地,要么是墙。机器猫只能从一个空地走到其上、下、左、右的空地。 机器猫初始时位于 ( 1 , 1 ) (1, 1) (1,1) 的位置,问能否…...

【C#】explicit、implicit与operator

字面解释 explicit:清楚明白的;易于理解的;(说话)清晰的,明确的;直言的;坦率的;直截了当的;不隐晦的;不含糊的。 implicit:含蓄的;不直接言明的;成为一部分的;内含的;完全的;无疑问的。 operator:操作人员;技工;电话员;接线员;…...

Vue:Vuex-Store使用指南

一、简介 1.1Vuex 是什么 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化。Vuex 也集成到 Vue 的官方调试工具 devtools extension (opens new window)&#xf…...

对经典动态规划问题【爬台阶】的一些思考

背景 今天在做Leetcode题目时,做到了一道经典的动态规划问题:爬楼梯,题目的大致意思很简单,有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上…...

开发一个能打造虚拟带货直播间的工具!

在当今数字化时代,直播带货已成为电商领域的一股强劲力量,其直观、互动性强的特点极大地提升了消费者的购物体验。 然而,随着技术的不断进步,传统直播带货模式正逐步向更加智能化、虚拟化的方向演进,本文将深入探讨如…...

汽车补光照明实验太阳光模拟器光源

汽车补光照明实验概览 汽车补光照明实验是汽车照明领域的一个重要环节,它涉及到汽车照明系统的性能测试和优化。实验的目的在于确保汽车在各种光照条件下都能提供良好的照明效果,以提高行车安全。实验内容通常包括但不限于灯光的亮度、色温、均匀性、响应…...

MediaPipe人体姿态、手指关键点检测

MediaPipe人体姿态、手指关键点检测 文章目录 MediaPipe人体姿态、手指关键点检测前言一、手指关键点检测二、姿态检测三、3D物体案例检测案例 前言 Mediapipe是google的一个开源项目,用于构建机器学习管道。   提供了16个预训练模型的案例:人脸检测、…...

树上dp之换根dp

基本概念: 换根dp是树上dp的一种 我们在什么时候需要用到换根dp呢? 当题目询问的属性,是需要当前结点为根时的属性,这个时候,我们就要使用换根dp 换根dp的基本思路: 假设题目询问的的属性为x 通常我们…...

2024/8/13 英语每日一段

Mackey says while Whole Foods has become more homogenized under Amazon, it did enable the store to do what it couldn’t have done independently. “People saw us as too expensive and out of touch with our customers,” he says. “The main thing Whole Foods n…...

Java多线程练习(1)

MultiProcessingExercise package MultiProcessingExercise120240813;public class MultiProcessingExercise {public static void main(String[] args) {/*需求:一共有1000张电影票,可以在两个窗口领取,假设每次领取的时间为3000毫秒,请用多线程模拟卖票过程并打印…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异&#xff…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...