当前位置: 首页 > news >正文

MySQL中的索引——适合创建索引的情况

1.适合创建索引的情况

1、字段的数值有唯一性的限制

image-20220808223333115

2、频繁作为 WHERE 查询条件的字段

某个字段在 SELECT 语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。

比如 student_info 数据表(含 100 万条数据),假设我们想要查询 student_id=123110 的用户信息。

①查看student_info表中的索引

可以看出,我们没有对student_id字段创建索引。

②进行如下查询,耗时220ms

③添加索引

alter table student_info add index idx_sid(student_id);

④再查询。耗时0ms。性能提升很大!

3、经常 GROUP BY 和 ORDER BY 的列

        索引其实就是让数据按照某种顺序进行存储或检索。当我们使用 GROUP BY 对数据进行分组查询,或者使用 ORDER BY 对数据进行排序的时候,如果 对分组或者排序的字段建立索引,本身索引的数据就已经排好序了,进行分组查询和排序操作性能不好吗?另外,如果待排序的列有多个,那么可以在这些列上建立 组合索引

使用GROUP BYORDER BY,先看看不加索引的情况:

没有添加索引,大概执行时间900ms

加上索引

SELECT student_id,COUNT(*) AS num FROM student_info
GROUP BY student_id
LIMIT 100;

执行时间只要40ms,大概相差20多倍!


再考虑复杂一点的情况,group by和order by一起使用

        这是只给student_id和create_time两列单独添加单列索引的情况。可以看到查询速度很慢,要5s多。

ALTER TABLE student_info ADD INDEX idx_sid_cre_time(student_id,create_time DESC);

添加联合索引

使用联合索引只需要耗时0.25ms!

注意:

        如果我们仅仅使用GROUP BY 或者 ORDER BY,且后面只有一个字段,则单独建立索引;如果后面跟多个字段,则建立联合索引。如果既有GROUP BY 又有 ORDER BY,那就建立联合索引,且GROUP BY的字段写在(联合索引的)前面,ORDER BY的字段写在(联合索引的)后面。8.0后的版本也可以考虑使用降序索引。


4、UPDATE、DELETE 的 WHERE 条件列

        对数据按照某个条件进行查询后再进行 UPDATE 或 DELETE 的操作,如果对 WHERE 字段创建了索引,就能大幅提升效率。原理是因为我们需要先根据 WHERE 条件列检索出来这条记录,然后再对它进行更新或删除。 如果进行更新的时候,更新的字段是非索引字段,提升的效率会更明显(不用维护索引了),这是因为非索引字段更新不需要对索引进行维护。

 UPDATE student_info SET student_id = 10002WHERE NAME = '462eed7ac6e791292a79';


5、DISTINCT 字段需要创建索引

        有时候我们需要对某个字段进行去重,使用 DISTINCT,那么对这个字段创建索引,也会提升查询效率。创建索引以后,在B+树种相同的字段就会在一起,这样我们DISTINCT去重的时候,速度就会快很多。

比如,我们想要查询课程表中不同的 student_id 都有哪些,如果我们没有对 student_id 创建索引,执行 SQL 语句:

SELECT DISTINCT(student_id) FROM `student_info`; 

运行结果(600637 条记录,运行时间 0.683s )

如果我们对 student_id 创建索引,再执行 SQL 语句:

SELECT DISTINCT(student_id) FROM `student_info`;

运行结果(600637 条记录,运行时间0.010s )
你能看到 SQL 查询效率有了提升,同时显示出来的 student_id 还是按照 递增的顺序 进行展示的。这是因为索引会对数据按照某种顺序进行排序,所以在去重的时候也会快很多。


6、多表 JOIN 连接操作时,创建索引注意事项

        首先,连接表的数量尽量不要超过 3 张 ,因为每增加一张表就相当于增加了一次嵌套的循环,数量级增长会非常快(n ,n^2 , n^3…),严重影响查询的效率。

        其次,对 WHERE 条件创建索引,因为 WHERE 才是对数据条件的过滤。如果在数据量非常大的情况下,没有 WHERE 条件过滤是非常可怕的。

        注意:对于用连接的字段创建索引,这些字段在多张表中的 类型必须一致 。比如 course_id 在student_info 表和 course 表中都为 int(11) 类型,而不能一个为 int 另一个为 varchar 类型。否则在查询时,虽然也会帮我们进行隐式的类型转换,转换时会使用函数,但会导致索引失效

可以看到,没有使用索引后,多表连接查询效率高了两百多倍!

相关文章:

MySQL中的索引——适合创建索引的情况

1.适合创建索引的情况 1、字段的数值有唯一性的限制 2、频繁作为 WHERE 查询条件的字段 某个字段在 SELECT 语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。 …...

5款在线伪原创改写软件,智能改写文章效果好

在这个信息爆炸的时代,内容创作变得愈发重要,而对于创作者来说,有时需要一些得力的伪原创改写工具来辅助我们更好地改写出高质量的内容。今天我要和大家分享5款令人惊喜的在线伪原创改写软件,它们以出色的智能改写效果&#xff0c…...

opencv-python图像增强四:多曝光融合(方法一)

文章目录 一、简介:二、多曝光融合方案:三、算法实现步骤3.1 读取图像与曝光时间:3.2 计算响应曲线并合并3.3 色调映射 四:整体代码实现五:效果 一、简介: 在摄影和计算机视觉领域,高动态范围&…...

Qt 实战(9)窗体 | 9.2、QDialog

文章目录 一、QDialog1、基本概念2、常用特性2.1、模态与非模态2.2、数据交互 3、总结 前言: Qt框架中的QDialog类是一个功能强大且灵活的对话框控件,广泛应用于各种GUI(图形用户界面)应用程序中,用于处理用户输入、消…...

Spring 事务机制

1. 引言 1.1 什么是事务 事务是由用户定义的一系列操作序列所组成的最小工作单元;这些操作要么全部完成,要么全部不完成,是一个不可分割的工作单元。常见于数据库中的并发控制和数据一致性处理场景。 1.2 事务的特性 事务具有以下特性&am…...

Android 13 GMS 内置壁纸

如图,原生系统上,设备上的壁纸 显示系统内置壁纸。如果没有添加内置壁纸,就显示默认的壁纸。点击进去就是预览页面 扩展下,默认壁纸在 frameworks/base/core/res/res/drawable-sw720dp-nodpi/default_wallpaper.png frameworks/b…...

【LeetCode】234. 回文链表

回文链表 题目描述: 给你一个单链表的头节点 head ,请你判断该链表是否为回文链表。如果是,返回 true ;否则,返回 false 。 示例 1: 输入:head [1,2,2,1] 输出:true示例 2&#…...

零基础学会机器学习,到底要多久?

这两天啊,有不少朋友和我说,想学机器学习,但是之前没有基础,不知道能不能学得会。 首先说结论,只要坚持,就能学会,但是一定不能三天打鱼两天晒网,要持之以恒,至少每隔两…...

视频汇聚/安防监控综合平台EasyCVR接入海康私有协议EHOME显示失败是什么原因?

安防监控/视频综合管理平台/视频集中存储/磁盘阵列EasyCVR视频汇聚平台,支持多种视频格式和编码方式(H.264/H.265),能够轻松对接各类前端监控设备,实现视频流的统一接入与集中管理。安防监控EasyCVR平台支持多种流媒体…...

Qt解析XML

背景 本来想解析VS的项目配置文件(*.vcxproj)&#xff0c;配合cppclean来发现多余的#incldue。 结果发现低估了难度&#xff0c;VS会间接引入许多目录。 略有不甘&#xff0c;暂且作为一个解析XML文件的示例。 代码 VSProjectParser.h #include <QVector> #include…...

PwnLab: init-文件包含、shell反弹、提权--靶机渗透思路讲解

Vulnhub靶机链接回【PwnLab】 首页有一个登录框 image-20240807124822770 他没有验证码&#xff0c;我们试试暴力破解 image-20240807122743025 开始爆破了&#xff0c;全部失败&#xff0c;哈哈哈 image-20240807122851001 nmap全端口扫描试试 image-20240807131408315 有…...

OpenCV—二值化Threshold()、adaptiveThreshold()

cv2.threshold() c&#xff1a;double cv::threshold ( InputArray src, OutputArray dst, double thresh, double maxval, int type ) (注&#xff1a;源图片, 目标图, 阈值, 填充色, 阈值类型) python:cv.threshold(src,thresh, maxval, type[, dst]) src&#xff1a;源图片…...

第二天:java面向对象编程(OOP)

第二天&#xff1a;java面向对象编程&#xff08;OOP&#xff09; 1. 深入理解OOP四大特性 封装&#xff08;Encapsulation&#xff09;&#xff1a;学习如何将数据&#xff08;属性&#xff09;和操作数据的方法&#xff08;行为&#xff09;组合成一个独立的单元&#xff0…...

Selenium + Python 自动化测试07(滑块的操作方法)

我们的目标是&#xff1a;按照这一套资料学习下来&#xff0c;大家可以独立完成自动化测试的任务。 本篇文章主要讲述如何操作滑块。 目前很多系统登录或者注册的页面都有滑块相关的验证&#xff0c;selenium 中对滑块的基本操作采用了元素的拖曳的方式。需要用到Actiochains模…...

三防平板满足多样化定制为工业领域打造硬件解决方案

在当今工业领域&#xff0c;数字化、智能化的发展趋势日益显著&#xff0c;对于高效、可靠且适应各种复杂环境的硬件设备需求不断增长。三防平板作为一种具有坚固耐用、防水防尘防摔特性的工业级设备&#xff0c;正以其出色的性能和多样化的定制能力&#xff0c;为不同行业的应…...

pytorch,用lenet5识别cifar10数据集(训练+测试+单张图片识别)

目录 LeNet-5 LeNet-5 结构 CIFAR-10 pytorch实现 lenet模型 训练模型 1.导入数据 2.训练模型 3.测试模型 测试单张图片 代码 运行结果 LeNet-5 LeNet-5 是由 Yann LeCun 等人在 1998 年提出的一种经典卷积神经网络&#xff08;CNN&#xff09;模型&#xff0c;主要…...

Word卡顿的处理方法

1. 检查和关闭后台程序 关闭不必要的后台程序,释放系统资源。使用任务管理器(Ctrl + Shift + Esc)查看占用CPU和内存较高的应用,并关闭它们。2. 更新Microsoft Office 确保你的Microsoft Office软件是最新版本。新版本通常修复了已知的性能问题。打开Word,点击文件 > 账…...

在 Linux上常见的10大压缩格式解压命令和它们对应的压缩格式

文章目录 前言一、解压 .zip 文件二、解压 .tar.gz 或 .tgz 文件三、解压 .tar 文件四、解压 .tar.bz2 文件五、解压 .tar.xz 文件六、解压 .gz 文件七、解压 .bz2 文件八、解压 .xz 文件九、解压 .7z 文件十、解压 .rar 文件总结 前言 Linux 命令可以解压不同格式的压缩文件。…...

【数据结构】三、栈和队列:6.链队列、双端队列、队列的应用(树的层次遍历、广度优先BFS、先来先服务FCFS)

文章目录 2.链队列2.1初始化&#xff08;带头结点&#xff09;不带头结点 2.2入队&#xff08;带头结点&#xff09;2.3出队&#xff08;带头结点&#xff09;❗2.4链队列c实例 3.双端队列考点:输出序列合法性栈双端队列 队列的应用1.树的层次遍历2.图的广度优先遍历3.操作系统…...

技术速递|使用 Native Library Interop 为 .NET MAUI 创建绑定

作者&#xff1a;Rachel Kang 排版&#xff1a;Alan Wang 在当今的应用开发领域&#xff0c;通过利用本机功能来扩展 .NET 应用程序的能力非常宝贵。.NET MAUI 处理程序架构使开发人员能够使用 .NET 代码直接操作本机控件&#xff0c;甚至允许无缝创建跨平台自定义控件。然而&a…...

Linux笔记 --- 标准IO

系统IO的最大特点一个是更具通用性&#xff0c;不管是普通文件、管道文件、设备节点文件、接字文件等等都可以使用&#xff0c;另一个是他的简约性&#xff0c;对文件内数据的读写在任何情况下都是带任何格式的&#xff0c;而且数据的读写也都没有经过任何缓冲处理&#xff0c;…...

洛谷:B3625 迷宫寻路

迷宫寻路 题目描述 机器猫被困在一个矩形迷宫里。 迷宫可以视为一个 n m n\times m nm 矩阵&#xff0c;每个位置要么是空地&#xff0c;要么是墙。机器猫只能从一个空地走到其上、下、左、右的空地。 机器猫初始时位于 ( 1 , 1 ) (1, 1) (1,1) 的位置&#xff0c;问能否…...

【C#】explicit、implicit与operator

字面解释 explicit&#xff1a;清楚明白的;易于理解的;(说话)清晰的&#xff0c;明确的;直言的;坦率的;直截了当的;不隐晦的;不含糊的。 implicit&#xff1a;含蓄的;不直接言明的;成为一部分的;内含的;完全的;无疑问的。 operator&#xff1a;操作人员;技工;电话员;接线员;…...

Vue:Vuex-Store使用指南

一、简介 1.1Vuex 是什么 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化。Vuex 也集成到 Vue 的官方调试工具 devtools extension (opens new window)&#xf…...

对经典动态规划问题【爬台阶】的一些思考

背景 今天在做Leetcode题目时&#xff0c;做到了一道经典的动态规划问题&#xff1a;爬楼梯&#xff0c;题目的大致意思很简单&#xff0c;有个小孩正在上楼梯&#xff0c;楼梯有n阶台阶&#xff0c;小孩一次可以上1阶、2阶或3阶。实现一种方法&#xff0c;计算小孩有多少种上…...

开发一个能打造虚拟带货直播间的工具!

在当今数字化时代&#xff0c;直播带货已成为电商领域的一股强劲力量&#xff0c;其直观、互动性强的特点极大地提升了消费者的购物体验。 然而&#xff0c;随着技术的不断进步&#xff0c;传统直播带货模式正逐步向更加智能化、虚拟化的方向演进&#xff0c;本文将深入探讨如…...

汽车补光照明实验太阳光模拟器光源

汽车补光照明实验概览 汽车补光照明实验是汽车照明领域的一个重要环节&#xff0c;它涉及到汽车照明系统的性能测试和优化。实验的目的在于确保汽车在各种光照条件下都能提供良好的照明效果&#xff0c;以提高行车安全。实验内容通常包括但不限于灯光的亮度、色温、均匀性、响应…...

MediaPipe人体姿态、手指关键点检测

MediaPipe人体姿态、手指关键点检测 文章目录 MediaPipe人体姿态、手指关键点检测前言一、手指关键点检测二、姿态检测三、3D物体案例检测案例 前言 Mediapipe是google的一个开源项目&#xff0c;用于构建机器学习管道。   提供了16个预训练模型的案例&#xff1a;人脸检测、…...

树上dp之换根dp

基本概念&#xff1a; 换根dp是树上dp的一种 我们在什么时候需要用到换根dp呢&#xff1f; 当题目询问的属性&#xff0c;是需要当前结点为根时的属性&#xff0c;这个时候&#xff0c;我们就要使用换根dp 换根dp的基本思路&#xff1a; 假设题目询问的的属性为x 通常我们…...

2024/8/13 英语每日一段

Mackey says while Whole Foods has become more homogenized under Amazon, it did enable the store to do what it couldn’t have done independently. “People saw us as too expensive and out of touch with our customers,” he says. “The main thing Whole Foods n…...