当前位置: 首页 > news >正文

【机器学习随笔】基于kmeans的车牌类型分类注意点

kmeans是无监督的聚类算法,可用于数据的分类。本文尝试用kmeans对车牌类型进行分类,记录使用过程中的注意点。
kmeans使用过程中涉及两个大部分,模型与分析。模型部分包括训练模型和使用模型,分析部分主要为可视化分析。两部分的主要流程如下。

训练与使用

训练模型与使用模型
数据可视化
数据分布的可视化展示
下面对主要的部分进行解释和代码说明
一、数据集与预处理
使用车牌数据,车牌数据为rgb图片数据,共7种类型的车牌500张。主要想从颜色上进行区分,所以数据不进行灰度化,而是提取了r分量与g分量的比值做为输入。同时图片需要展开成一维数据送入kmeans的接口

img = img.convert('RGB')
r, g, b = img.split()
r_array = np.array(r).flatten().astype(float)#0.592
g_array = np.array(g).flatten().astype(float)#0.436
b_array = np.array(b).flatten().astype(float)#0.554
img_array = r_array/g_array#0.816

二、kmeans参数配置
定义了7分类,将随机数从0-79进行尝试,取数据最好的。

from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
images_data = scaler.fit_transform(images_data)
# 定义聚类数量
n_clusters = 7  # 根据实际情况选择聚类的数量
# 使用KMeans进行聚类
bestacc = 0
for i in range(80):kmeans = KMeans(n_clusters=n_clusters,max_iter=8,random_state=i)#, random_state=42)kmeans.fit(images_data)# 输出每个图片所属的聚类pre_labels = kmeans.labels_

每次循环后计算acc,数据好的acc就保存下来。

   acc = getacc(pre_labels,gt_labels)if acc >= bestacc:bestacc = accmodel_path = 'kmeans_model_'+str(i)+'.joblib'joblib.dump(kmeans, model_path)print("iter:",i," Acc:", acc)

计算acc时需要注意的地方:1、训练好的标签与标定标签之间不一样,我的解决方法是:提取预测标签相同的目标,统计其中标定标签个数最多的那个做为这一类的真实标签。
2、需要注意,该方法可能存再多个标定标签的个数是一样的,这时候需要自己检查,选择一下。
完成上两步后,可进一步获取预测标签与真实标签的映射关系,后续预测其他数据时,经过转换就可以直接看到预测标签与标定标签的关系。

三、可视化问题
1、图片数据进行处理后,是一维向量,对于128x48大小的车牌而言,是转换成1*6144维度的向量。高维向量难以用散点图的形式进行可视化,所以需要对数据进行降维,得到一个二维向量,即可在平面上显示,此处用PCA进行降维。
2、降维后的数据,按类进行区分,计算其均值做为类中心位置。
3、计算每类数据与中心位置的距离
4、获得距离后即可进行可视化。

pca = PCA(n_components=2,whiten=True)
X_reduced = pca.fit_transform(data)cluster_centers=[]
for clust in range(7):indices_of_clust = np.where(labels == clust)[0]cluster_centers.append(np.mean(X_reduced[indices_of_clust], axis=0))
cluster_centers = np.array(cluster_centers)
distances = [np.linalg.norm(x - cluster_centers[label]) for x, label in zip(X_reduced, labels)]# 可视化plt.figure(figsize=(10, 8))scatter = plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=labels, cmap='magma', s=[d*50 for d in distances])centers = plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1], c='red', marker='x')plt.title('K-Means Clustering with Centroids and Distances')plt.xlabel('Feature 1')plt.ylabel('Feature 2')unique_labels = np.unique(labels)colors = scatter.cmap(scatter.norm(unique_labels))legend_elements = [plt.Line2D([0], [0], marker='o', color='w', label=f'Label {label}', markerfacecolor=color, markersize=10) for label, color in zip(unique_labels, colors)]

四、可视化效果
在这里插入图片描述
可视化效果图:其中0是黄牌,3,4是新能源牌。从颜色上看,新能源的两类绿色较难分开,黄色与绿色也很大程度上重叠。
至此,完成了kmeans的验证和可视化,从颜色上对车牌进行区分会受限于相同颜色不同类型的干扰,也会有黄绿难区分的的情况

相关文章:

【机器学习随笔】基于kmeans的车牌类型分类注意点

kmeans是无监督的聚类算法,可用于数据的分类。本文尝试用kmeans对车牌类型进行分类,记录使用过程中的注意点。 kmeans使用过程中涉及两个大部分,模型与分析。模型部分包括训练模型和使用模型,分析部分主要为可视化分析。两部分的主…...

matlab处理函数3

1. 直方图均衡化的 Matlab 实现 1.1 imhist 函数 功能:计算和显示数字数字图像的色彩直方图 格式:imhist(I,n) imhist(X,map) 说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X…...

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下&a…...

开源项目低代码表单FormCreate中通过接口加载远程数据选项

在开源项目低代码表单 FormCreate 中,fetch 属性提供了强大的功能,允许从远程 API 加载数据并将其应用到表单组件中。通过灵活的配置,fetch 可以在多种场景下发挥作用,从简单的选项加载到复杂的动态数据处理。 源码地址: Github …...

k8s的搭建

一、安装环境 准备三台主机: 192.168.1.66 k8s-master 192.168.1.77 k8s-node01 192.168.1.88 k8s-node02 网段: Pod ⽹段 172.16.0.0/16 Service ⽹段 10.96.0.0/16 注:宿主机⽹段、Pod…...

人工智能与机器学习原理精解【19】

文章目录 马尔科夫链概述定义与性质分类应用领域收敛性马尔科夫链蒙特卡洛方法 马尔科夫链原理详解一、定义二、特性三、数学描述四、类型五、应用六、示例定义性质转移概率矩阵应用举例结论 马尔科夫链在语音识别和语音合成中的应用一、马尔科夫链在语音识别中的应用1. 基本概…...

DingoDB:多模态向量数据库的实践与应用

DingoDB:多模态向量数据库的实践与应用 1. 引言 在当今数据驱动的时代,高效处理和分析大规模、多样化的数据变得至关重要。DingoDB作为一个分布式多模态向量数据库,为我们提供了一个强大的解决方案。本文将深入探讨DingoDB的特性、安装过程…...

03.01、三合一

03.01、[简单] 三合一 1、题目描述 三合一。描述如何只用一个数组来实现三个栈。 你应该实现push(stackNum, value)、pop(stackNum)、isEmpty(stackNum)、peek(stackNum)方法。stackNum表示栈下标,value表示压入的值。 构造函数会传入一个stackSize参数&#xf…...

github上clone代码过程

从 GitHub 上拉取代码的过程非常简单,一般通过 git clone 命令来完成。以下是详细步骤: 下载git工具 要下载并安装 Git,你可以根据你的操作系统来选择相应的步骤。以下是如何在不同操作系统上安装 Git 的详细说明: 1. 在 Windo…...

ChatGLM3模型搭建教程

一、介绍 ChatGLM3 是智谱 AI 和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性: 更强大的基础模型…...

多层建筑能源参数化模型和城市冠层模型的区别

多层建筑能源参数化(Multi-layer Building Energy Parameterization, BEP)模型和城市冠层模型(Urban Canopy Model, UCM)都是用于模拟城市环境中能量交换和微气候的数值模型,但它们的侧重点和应用场景有所不同。以下是…...

27. Redis并发问题

1. 前言 对于一个在线运行的系统,如果需要修改数据库已有数据,需要先读取旧数据,再写入新数据。因为读数据和写数据不是原子操作,所以在高并发的场景下,关注的数据可能会修改失败,需要使用锁控制。 2. 分布式场景 2.1 分布式锁场景 面试官提问: 为什么要使用分布式锁?…...

JVM四种垃圾回收算法以及G1垃圾回收器(面试)

JVM 垃圾回收算法 标记清除算法:标记清除算法将垃圾回收分为两个阶段:标记阶段和清除阶段。 在标记阶段通过根节点,标记所有从根节点开始的对象。然后,在清除阶段,清除所有未被标记的对象 适用场合: 存活对…...

Python 数学建模——Vikor 多标准决策方法

文章目录 前言原理步骤代码实例 前言 Vikor 归根到底其实属于一种综合评价方法。说到综合评价方法,TOPSIS(结合熵权法使用)、灰色关联度分析、秩和比法等方法你应该耳熟能详。Vikor 未必比这些方法更出色,但是可以拓展我们的视野。…...

计算机网络八股总结

这里写目录标题 网络模型划分(五层和七层)及每一层的功能五层网络模型七层网络模型(OSI模型) 三次握手和四次挥手具体过程及原因三次握手四次挥手 TCP/IP协议组成UDP协议与TCP/IP协议的区别Http协议相关知识网络地址,子…...

AMD CMD UMD CommonJs ESM 的历史和区别

这几个东西都是用于定义模块规范的。有些资料会提及到这些概念,不理清楚非常容易困惑。 ESM(ES Module) 这个实际上我们是最熟悉的,就是ES6的模块功能。出的最晚,因为是官方出品,所以大势所趋&#xff0c…...

人工智能数据基础之微积分入门-学习篇

目录 导数概念常见导数和激活导数python代码绘制激活函数微分概念和法则、积分概念微积分切线切面代码生成案例链式求导法则反向传播算法(重要) 一、概念 二、常见导数及激活导数 常见激活函数及其导数公式: 在神经网络中,激活函数用于引入非线性因素&…...

【PSINS】ZUPT代码解析(PSINS_SINS_ZUPT)|MATLAB

这篇文章写关于PSINS_SINS_ZUPT的相关解析。【值得注意的是】:例程里面给的这个m文件的代码,并没有使用ZUPT的相关技术,只是一个速度观测的EKF 简述程序作用 主要作用是进行基于零速更新(ZUPT)的惯性导航系统(INS)仿真和滤波 什么是ZUPT ZUPT是Zero Velocity Update(…...

多态(上)【C++】

文章目录 多态的概念多态的实现多态产生的条件什么是虚函数?虚函数的重写和协变重写协变 析构函数的重写为什么有必要要让析构函数构成重写? 多态的概念 C中的多态是面向对象编程(OOP)的一个核心特性,指的是同一个接口…...

如何驱动一枚30年前的音源芯片,YMF288驱动手记 Part2

一些问题 在上一篇里面虽然策划了想要驱动YMF288所需要做的事情以及目标。但是,在板子打出来后,我在进一步的研究中,发现我犯了个错误,那就是YMF288并不是使用现在很多轻量化的嵌入式,比如ESP32常用的I2S协议的&#x…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...