当前位置: 首页 > news >正文

gpt2 adapter finetune

1. 安装依赖:

pip install -U adapter-transformers
pip install datasets

2.训练代码:

from datasets import load_dataset
from transformers import AutoModelForCausalLM
from transformers import GPT2Tokenizer
from transformers import AdapterTrainer, TrainingArgumentsdataset = load_dataset("poem_sentiment")
print(dataset)def encode_batch(batch):"""Encodes a batch of input data using the model tokenizer."""encoding = tokenizer(batch["verse_text"])# For language modeling the labels need to be the input_ids#encoding["labels"] = encoding["input_ids"]return encodingtokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# The GPT-2 tokenizer does not have a padding token. In order to process the data 
# in batches we set one here 
tokenizer.pad_token = tokenizer.eos_token
column_names = dataset["train"].column_names
dataset = dataset.map(encode_batch, remove_columns=column_names, batched=True)block_size = 50
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):# Concatenate all texts.concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}total_length = len(concatenated_examples[list(examples.keys())[0]])# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can# customize this part to your needs.total_length = (total_length // block_size) * block_size# Split by chunks of max_len.result = {k: [t[i : i + block_size] for i in range(0, total_length, block_size)]for k, t in concatenated_examples.items()}result["labels"] = result["input_ids"].copy()return resultdataset = dataset.map(group_texts,batched=True,)dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])model = AutoModelForCausalLM.from_pretrained("gpt2")
# add new adapter
model.add_adapter("poem")
# activate adapter for training
model.train_adapter("poem")training_args = TrainingArguments(output_dir="./examples", do_train=True,remove_unused_columns=False,learning_rate=5e-4,num_train_epochs=3,
)trainer = AdapterTrainer(model=model,args=training_args,tokenizer=tokenizer,train_dataset=dataset["train"],eval_dataset=dataset["validation"], )trainer.train()model.save_adapter("adapter_poem", "poem")

3.测试代码:

from transformers import GPT2LMHeadModel, GPT2Tokenizermodel = GPT2LMHeadModel.from_pretrained("gpt2")
# You can also load your locally trained adapter
model.load_adapter("adapter_poem")
model.set_active_adapters("poem")PREFIX = "In the night"encoding = tokenizer(PREFIX, return_tensors="pt")
output_sequence = model.generate(input_ids=encoding["input_ids"],attention_mask=encoding["attention_mask"],do_sample=True,num_return_sequences=5,max_length = 50,
)for generated_sequence_idx, generated_sequence in enumerate(output_sequence):print("=== GENERATED SEQUENCE {} ===".format(generated_sequence_idx + 1))generated_sequence = generated_sequence.tolist()# Decode texttext = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)# Remove EndOfSentence Tokenstext = text[: text.find(tokenizer.eos_token)]print(text)

4.结果输出

=== GENERATED SEQUENCE 1 ===
In the night, he would go;and she is the queen, and a mistress,and she keeps in the nightthe king who died" (the "giant," said the ancient, as a poet)and a child in his home
=== GENERATED SEQUENCE 2 ===
In the night,when one thinks of the war upon the world, and of men who live in it;that's all you have, though, that's all, that's what you want. and that makes me want, but here's th
=== GENERATED SEQUENCE 3 ===
In the night, she was the first, for once, the girl of good cheer!--of the people, the love of her life, she has not come to see her sister again;yet i think if i could not have loved her I wer
=== GENERATED SEQUENCE 4 ===
In the night, she sang the sweetest lullaby of morning-the very sound he heard:the silent and delicate voice of the holy sea,that his face would not come to grief.a quiet and silent night,the song as always i
=== GENERATED SEQUENCE 5 ===
In the nighttime, the king says:but there can be no peace or sorrow if that night's not a blessing,the only hope to her heart lies in the bright day.a good old fool, like a son of a friend,ho

相关文章:

gpt2 adapter finetune

1. 安装依赖: pip install -U adapter-transformers pip install datasets 2.训练代码: from datasets import load_dataset from transformers import AutoModelForCausalLM from transformers import GPT2Tokenizer from transformers import Adap…...

Day14_文件操作

一、数据存储 1.1 计算机数据存储 计算机内存分为运行内存和硬盘两种:保存在运行内存中的数据在程序运行结束后会自动释放,保存在硬盘中的数据会一直存在(除非手动删除或者硬盘损坏) 1)打开文件 open(文件路径, 文件打开方式‘r’, encod…...

leetcode 轮转数组 189

题目 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: [5,6,7,1,2…...

Leetcode.1849 将字符串拆分为递减的连续值

题目链接 Leetcode.1849 将字符串拆分为递减的连续值 Rating : 1747 题目描述 给你一个仅由数字组成的字符串 s。 请你判断能否将 s拆分成 两个或者多个 非空子字符串 ,使子字符串的 数值 按 降序 排列,且每两个 相邻子字符串 的数值之 差 …...

Android布局层级过深为什么会对性能有影响?为什么Compose没有布局嵌套问题?

做过布局性能优化的同学都知道,为了优化界面加载速度,要尽可能的减少布局的层级。这主要是因为布局层级的增加,可能会导致测量时间呈指数级增长。 而Compose却没有这个问题,它从根本上解决了布局层级对布局性能的影响: Compose界…...

【UR机械臂CB3 网络课程 】

【UR机械臂CB3 网络课程 】1. 前言2. 概览:特色与术语2.1 机器人组成2.1.1控制柜2.1.2 UR 机器人手臂2.2 接通机器人电源2.3 移动机械臂3. 机器人如何工作3.1 选择臂端工具3.2 输入有关臂端工具的信息3.3 连接外部装置3.4 机器人编程4. 设置工具4.1 末端执行器配置4.2 工具中心…...

dp-统计字典序元音字符串的数目

给你一个整数 n,请返回长度为 n 、仅由元音 (a, e, i, o, u) 组成且按 字典序排列 的字符串数量。 字符串 s 按 字典序排列 需要满足:对于所有有效的 i,s[i] 在字母表中的位置总是与 s[i1] 相同或在 s[i1] 之前。 示例 1: 输入&…...

LFM雷达实现及USRP验证【章节3:连续雷达测距测速】

第一章介绍了在相对速度为0时候的雷达测距原理 目录 1. LFM测速 1.1 雷达测速原理 1.2 Chrip信号测速 2. LFM测速代码实现 参数设置 仿真图像 matlab源码 代码分析 第一章介绍了在相对速度为0时候的雷达测距原理,第二章介绍了基于LFM的雷达测距原理及其实现…...

COLMAP多视角视图数据可视化

这篇博文主要介绍多视角三维重建的实用工具COLMAP。为了让读者更快确定此文是否为自己想找的内容,我先用简单几句话来描述此文做的事情: 假设我们针对一个物体(人)采集了多个(假设60个)视角的照片&#xff…...

2023年全国最新高校辅导员精选真题及答案36

百分百题库提供高校辅导员考试试题、辅导员考试预测题、高校辅导员考试真题、辅导员证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 92.校园文化形成与发展的主要影响因素有() A.学校的领导与管理活…...

ThreeJS-全屏和退出全屏、自适应大小(五)

下载新得组件 npm install gsap -S 新引入 import gsap from gsap //动画控制 代码&#xff1a; <template> <div id"three_div"> </div> </template> <script> import * as THREE from "three"; import {OrbitControls } f…...

等级保护2.0要求及所需设备清单

等级保护的工作流程包括定级、备案、建设整改、等级测评&#xff0c;核心思想在于建立“可信、可控、可管”的安全防护体系&#xff0c;使得系统能够按照预期运行&#xff0c;免受信息安全攻击和破坏。 三级等保要求及所需设备 三级等级保护指标项&#xff1a; 物理访问控制…...

【大数据之Hadoop】六、HDFS之NameNode、Secondary NameNode和DataNode的内部工作原理

NN和2NN的内部工作原理 对于NameNode的存放位置&#xff1a; 内存中&#xff1a;好处&#xff1a;计算快 坏处&#xff1a;可靠性差&#xff0c;断电后元数据会丢失 磁盘中&#xff1a;好处&#xff1a;可靠性搞 坏处&#xff1a;计算慢 内存磁盘中&#xff1a;效率低 所以设…...

小黑子—Java从入门到入土过程:第四章

Java零基础入门4.0Java系列第四章1. 顺序结构2. if语句3. switch 语句3.1 default的位置和省略3.2 case 穿透3.3 switch 新特性 &#xff08;jdk12开始&#xff09;4. for 循环5. while 循环6.do...while 循环7. 无限循环8. 跳转控制语句9. 练习9.1 逢七过9.2 平方根9.3 求质数…...

数据库原理及应用(四)——SQL语句(2)SQL基础查询以及常见运算符

一、SELECT语句基础 数据库查询是数据库的核心操作&#xff0c;SELECT 语句用于从数据库中选取数据。 SELECT [ALL/DISTINCT] <列名>,<列名>...FROM <表名或视图名>,<表名或视图名>[WHERE <条件表达式>][GROUP BY <列名1> [HAVING <条…...

(算法基础)Floyd算法

适用情景Floyd算法适用于多源汇最短路&#xff0c;也就是他问你比如说从3号点到6号点的最短路距离&#xff0c;比如说从7号点到20号点的最短路距离&#xff0c;而不是单源最短路&#xff08;从1号点到n号点的最短路距离&#xff09;。在这个算法当中允许负权边的存在。但在求最…...

SQL语法:浅析select之七大子句

Mysql版本&#xff1a;8.0.26 可视化客户端&#xff1a;sql yog 目录一、七大子句顺序二、演示2.1 from语句2.2 on子句2.3 where子句2.4 group by子句2.4.1 WITHROLLUP&#xff0c;加在group by后面2.4.2 是否可以按照多个字段分组统计&#xff1f;2.4.3 分组统计时&#xff0c…...

中国人民大学与加拿大女王大学金融硕士——去有光的地方,并成为自己的光

光是我们日常生活中一个重要的元素&#xff0c;试想一下如果没有光&#xff0c;世界将陷入一片昏暗。人生路亦是如此&#xff0c;我们从追逐光、靠近光、直到自己成为光。人民大学与加拿大女王大学金融硕士项目是你人生路上的一束光吗 渴望想要成为一个更好的人&#xff0c;就…...

Python数据结构与算法篇(五)-- 二分查找与二分答案

1 二分法介绍 1.1 定义 二分查找又称折半查找、二分搜索、折半搜索等&#xff0c;是一种在静态查找表中查找特定元素的算法。 所谓静态查找表&#xff0c;即只能对表内的元素做查找和读取操作&#xff0c;不允许插入或删除元素。 使用二分查找算法&#xff0c;必须保证查找表中…...

小游戏也要讲信用

当下&#xff0c;小游戏鱼龙混杂&#xff0c;官方为能更好地保护用户、开发者以及平台的权益&#xff0c;近日宣布7月1日起试行小游戏主体信用分机制。 主体信用分是什么呢&#xff1f;简单来说&#xff0c;这是针对小游戏主体下所有小游戏帐号行为&#xff0c;对开发者进行评…...

贪心算法11

1. 贪心算法的概念 所谓贪心算法是指&#xff0c;在对问题求解时&#xff0c;总是做出在当前看来是最好的选择。也就是说&#xff0c;不从整体最优上加以考虑&#xff0c;他所做出的仅是在某种意义上的局部最优解。 贪心算法没有固定的算法框架&#xff0c;算法设计的关键是贪心…...

【并发编程】JUC并发编程(彻底搞懂JUC)

文章目录一、背景二、什么是JUC&#xff1f;三、JUC框架结构四、JUC框架概述五、JUC中常用类汇总六、相关名词进程和线程进程线程创建线程的几种常见的方式并发和并行用户线程和守护线程七、synchronized 作用范围&#xff1a;八、Lock锁(重点)什么是 Lock锁类型Lock接口lock()…...

Compose 动画 (七) : 高可定制性的动画 Animatable

1. Animatable和animateDpAsState的区别是什么 Animatable是Android Compose动画的底层API&#xff0c;如果我们查看源码&#xff0c;可以发现animateDpAsState内部是调用的animateValueAsState&#xff0c;而animateValueAsState内部调用的是Animatable animateDpAsState比A…...

vue3组件传值

1.父向子传值 父组件 引入子组件 import Son from ./components/Son.vue 设置响应式数据 const num ref(99) 绑定到子组件 <Son :num"num"></Son> 子组件 引入defineProps import { defineProps } from vue; 生成实例接收数据 type设置接收类…...

小白开发微信小程序00--文章目录

一个小白&#xff0c;一个老牛&#xff0c;空手能不能套白羊&#xff0c;能不能白嫖&#xff1f;我告诉你&#xff0c;一切都so easy&#xff0c;这个系列从0到106&#xff0c;屌到上天&#xff0c;盖过任何一个&#xff0c;试问&#xff0c;网上讲微信小程序开发的&#xff0c…...

随手记录第九话 -- Java框架整合篇

框架莫过于Spring了&#xff0c;那就以它为起点吧。 本文只为整理复习用&#xff0c;详细内容自行翻看以前文章。 1.Spring 有人说是Spring成就Java&#xff0c;其实也不是并无道理。 1.1 Spring之IOC控制反转 以XML注入bean的方式为入口&#xff0c;定位、加载、注册&…...

电影《铃芽之旅》观后感

这周看了电影《铃芽之旅》&#xff0c;整部电影是新海诚的新作。电影讲述的是女主铃芽为了关闭往门&#xff0c;在日本旅行中&#xff0c;遭遇灾难的故事。 &#xff08;1&#xff09;往昔记忆-往昔之物 电影中&#xff0c;有很多的“往门”&#xff0c;换成中国的话说&#xf…...

Web自动化测试(二)(全网最给力自动化教程)

欢迎您来阅读和练手&#xff01;您将会从本章的详细讲解中&#xff0c;获取很大的收获&#xff01;开始学习吧&#xff01; 2.4 CSS定位2.5 SeleniumBuilder辅助定位元素2.6 操作元素&#xff08;键盘和鼠标事件&#xff09; 正文 2.4 CSS定位 前言 大部分人在使用selenium定…...

【C语言经典例题!】逆序字符串

目录 一、题目要求 二、解题步骤 ①递归解法 思路 完整代码 ②循环解法 思路 完整代码 嗨大家好&#xff01; 本篇博客中的这道例题&#xff0c;是我自己在一次考试中写错的一道题 这篇博客包含了这道题的几种解法&#xff0c;以及一些我自己对这道题的看法&#xff…...

21 - 二叉树(三)

文章目录1. 二叉树的镜像2. 判断是不是完全二叉树3. 完全二叉树的节点个数4. 判断是不是平衡二叉树1. 二叉树的镜像 #include <ctime> class Solution {public:TreeNode* Mirror(TreeNode* pRoot) {// write code hereif (pRoot nullptr) return pRoot;//这里记得要记得…...

可以做空股票的网站/百度有钱花人工客服

有点散乱, 将就着看吧. 首先是博弈论的基础, 即 N 和 P 两种状态: N 为必胜状态, P 为必败状态. 对于N, P两种状态, 则有 1. 没有任何合法操作的状态, P; 2. 可以移动到P局面的情况为N状态; 3. 可以移动到的所有状态均为N状态, 则当前情况为P状态. 然后就可以引入SG函数了…...

wordpress mobile 主题/广告平台推广渠道

最近对人脸识别感兴趣&#xff0c;于是入坑安装Face_recognition&#xff0c;花一天功夫没装下来&#xff0c;我的系统和Python版本是win64Anacond(python3.7.1)。 一天下来搞明白了想安装face_recongnition的必需配置好Dlib&#xff0c; 配置好dlib的必要条件是&#xff1a;自…...

建设部门的网站/宁德市人民政府

在文章http://blog.csdn.net/u013063153/article/details/73611549写到了非HA集群的搭建。 现利用Zookeeper做HA&#xff0c;搭建HDFS集群。需要修改之前的配置。 1.进入etc/hadoop/目录&#xff0c;干掉masters文件(此文件是存放Secondary NameNode的) cd etc/hadoop/ rm …...

公司网站制作方案/深圳搜索引擎优化收费

前几篇Blog是对Docker的一个入门和初识&#xff0c;本篇Blog开始就详细学习下一个新的理论基础概念&#xff1a;Volume&#xff0c;也就是容器数据卷&#xff0c;听起来名字高大上&#xff0c;实际上就是一个宿主机的目录而已&#xff0c;为什么需要容器数据卷呢&#xff0c;可…...

什么网站动物和人做的吗/微信小程序开发流程

利用 Console 来学习、调试JavaScript 一 什么是 Console Console 是用于显示 JS和 DOM 对象信息的单独窗口。并且向 JS 中注入1个 console 对象&#xff0c;使用该对象 可以输出信息到 Console 窗口中。 二 什么浏览器支持 Console 很多人可能都知道 Chrome 和 FireFox(Fire…...

网站建设数据库软件英文/百度双十一活动

本节课延续上一节课的内容,您将完成今日力量训练下方的健身视频列表。 添加一个VStack视图,作为列表上方的标题和列表视图的容器。 添加一个HStack视图,作为列表标题视图的容器。 绘制一个圆形,设置它的填充颜色为紫色,圆形的宽度和高度为10,并增加圆形和右侧的标题文…...