当前位置: 首页 > news >正文

使用离火插件yoloV8数据标注,模型训练

1. 启动


 

2.相关配置 

2.1    data.yaml

path: D:/yolo-tool/yaunshen-yolov8/YOLOv8ys/YOLOv8-CUDA10.2/1/datasets/ceshi001
train: images
val: images
names: ['蔡徐坤','篮球']

2.2   cfg.yaml

# Ultralytics YOLOv8, GPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO trainingtask: detect  # inference task, i.e. detect, segment, classify
mode: train  # YOLO mode, i.e. train, val, predict, export# Train settings -------------------------------------------------------------------------------------------------------
model: C:\Users\AF5\Desktop\YOLOv8ql\YOLOv8-CPU\1\datasets\qh\pt\train2\weights\best.pt  # path to model file, i.e. yolov8n.pt, yolov8n.yaml    模型文件路径
data: C:\Users\AF5\Desktop\YOLOv8ql\YOLOv8-CPU\1\datasets\qh\data.yaml  # path to data file, i.e. i.e. coco128.yaml    数据集data文件路径
epochs: 100000  # number of epochs to train for    训练次数,达到这个次数后将终止训练,且无法该模型无法继续训练
patience: 0  # epochs to wait for no observable improvement for early stopping of training    超过这个次数没有提升将自动完成训练
batch: 1  # number of images per batch (-1 for AutoBatch)    批数量,设越大占用显存越多
imgsz: 640  # size of input images as integer or w,h    一般默认640,训练时的图片宽高
save: True  # save train checkpoints and predict results
save_period: -1  # Save checkpoint every x epochs (disabled if < 1)
cache: False  # True/ram, disk or False. Use cache for data loading
device:  # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 0  # number of worker threads for data loading (per RANK if DDP)    勿改,必须为0
project: C:/Users/AF5/Desktop/YOLOv8ql/YOLOv8-CPU/1/datasets/qh/val  # project name    勿改
name: train  # experiment name    训练完成的文件夹名称
exist_ok: False  # whether to overwrite existing experiment
pretrained: False  # whether to use a pretrained model
optimizer: SGD  # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
verbose: True  # whether to print verbose output
seed: 0  # random seed for reproducibility
deterministic: True  # whether to enable deterministic mode
single_cls: False  # train multi-class data as single-class
image_weights: False  # use weighted image selection for training
rect: False  # support rectangular training if mode='train', support rectangular evaluation if mode='val'
cos_lr: False  # use cosine learning rate scheduler
close_mosaic: 10  # disable mosaic augmentation for final 10 epochs
resume: False  # resume training from last checkpoint    为True时为继续模型的训练
min_memory: False  # minimize memory footprint loss function, choices=[False, True, <roll_out_thr>]
# Segmentation
overlap_mask: True  # masks should overlap during training (segment train only)
mask_ratio: 4  # mask downsample ratio (segment train only)
# Classification
dropout: 0.0  # use dropout regularization (classify train only)# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True  # validate/test during training    为True,训练时计算mAP
split: val  # dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False  # save results to JSON file
save_hybrid: False  # save hybrid version of labels (labels + additional predictions)
conf:   # object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7  # intersection over union (IoU) threshold for NMS
max_det: 300  # maximum number of detections per image
half: False  # use half precision (FP16)
dnn: False  # use OpenCV DNN for ONNX inference
plots: True  # save plots during train/val# Prediction settings --------------------------------------------------------------------------------------------------
source: C:\Users\AF5\Desktop\YOLOv8ql\YOLOv8-CPU\1\datasets\qh\images\qh174.png  # source directory for images or videos    需要进行预测视频或图片的路径
show: False  # show results if possible
save_txt: True  # save results as .txt file
save_conf: False  # save results with confidence scores
save_crop: False  # save cropped images with results
hide_labels: False  # hide labels
hide_conf: False  # hide confidence scores
vid_stride: 1  # video frame-rate stride
line_thickness: 3  # bounding box thickness (pixels)
visualize: False  # visualize model features
augment: False  # apply image augmentation to prediction sources
agnostic_nms: False  # class-agnostic NMS
classes:  # filter results by class, i.e. class=0, or class=[0,2,3]
retina_masks: False  # use high-resolution segmentation masks
boxes: True  # Show boxes in segmentation predictions# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript  # format to export to
keras: False  # use Keras
optimize: False  # TorchScript: optimize for mobile
int8: False  # CoreML/TF INT8 quantization
dynamic: False  # ONNX/TF/TensorRT: dynamic axes
simplify: False  # ONNX: simplify model
opset: 12  # ONNX: opset version (optional)
workspace: 4  # TensorRT: workspace size (GB)
nms: False  # CoreML: add NMS# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01  # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01  # final learning rate (lr0 * lrf)
momentum: 0.937  # SGD momentum/Adam beta1
weight_decay: 0.0005  # optimizer weight decay 5e-4
warmup_epochs: 3.0  # warmup epochs (fractions ok)
warmup_momentum: 0.8  # warmup initial momentum
warmup_bias_lr: 0.1  # warmup initial bias lr
box: 7.5  # box loss gain
cls: 0.5  # cls loss gain (scale with pixels)
dfl: 1.5  # dfl loss gain
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
label_smoothing: 0.0  # label smoothing (fraction)
nbs: 64  # nominal batch size
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.0  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.5  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)
mosaic: 1.0  # image mosaic (probability)
mixup: 0.0  # image mixup (probability)
copy_paste: 0.0  # segment copy-paste (probability)# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg:  # for overriding defaults.yaml# Debug, do not modify -------------------------------------------------------------------------------------------------
v5loader: False  # use legacy YOLOv5 dataloader# Tracker settings ------------------------------------------------------------------------------------------------------
tracker: botsort.yaml  # tracker type, ['botsort.yaml', 'bytetrack.yaml']

2.3 主要代码

import cv2
import time
from ultralytics import YOLO
import json
import numpy as npdef Yolov10Detector(frame, model, image_size, conf_threshold, cap):results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)frame = results[0].plot()# 获取当前帧的时间current_time = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000  # 以秒为单位# 打印所有标签结果及对应的时间for result in results:for box in result.boxes:c = int(box.cls)name = result.names[c]print(f"识别到的标签: {name},对应的时间: {current_time} 秒")return framedef main():image_size = 640  # Adjust as neededconf_threshold = 0.3  # Adjust as neededmodel = YOLO("D:/yolo-workspace/yoloy8-project/model/oneself/best.pt")source = "C:/Users/wangwei/Desktop/2024-09-18/20240925_115452.mp4"  # 0 for webcamcap = cv2.VideoCapture(source)while True:success, frame = cap.read()start_time = time.time()if success:print("读取帧成功!")if not success:print("读取帧失败!")breakmodelName = model.namesjson.dumps(modelName, ensure_ascii=False)#print("预检测 识别转json  信息为:" + json.dumps(modelName, ensure_ascii=False))frame = Yolov10Detector(frame, model, image_size, conf_threshold, cap)end_time = time.time()fps = 1 / (end_time - start_time)framefps = "FPS:{:.2f}".format(fps)try:cv2.rectangle(frame, (10, 1), (120, 20), (0, 0, 0), -1)cv2.putText(frame, framefps, (15, 17), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)except Exception as e:print("")cv2.imshow("yolov10-本地摄像头识别", frame)  # Display the annotated frameif cv2.waitKey(1) & 0xFF == ord('q'):  # Exit on 'q' key pres:breakcap.release()cv2.destroyAllWindows()main()

3. 模型训练

4.训练结果:

20240926_104219

相关文章:

使用离火插件yoloV8数据标注,模型训练

1. 启动 2.相关配置 2.1 data.yaml path: D:/yolo-tool/yaunshen-yolov8/YOLOv8ys/YOLOv8-CUDA10.2/1/datasets/ceshi001 train: images val: images names: [蔡徐坤,篮球] 2.2 cfg.yaml # Ultralytics YOLOv8, GPL-3.0 license # Default training settings and hyp…...

JavaScript 学习

一、输出 为方便调试可以输出内容&#xff0c;但是用户是看不到的。要在开发者模式中看。 console . log ( "Hello" )&#xff1b; 二、外部文件引用 可以直接在html中写JS <head> <meta charset"utf-8"> <script> console.log("he…...

【算法】分治:归并之 912.排序数组(medium)

系列专栏 双指针 模拟算法 分治思想 目录 1、题目链接 2、题目介绍 3、解法 解决方案选择 解题步骤 4、代码 1、题目链接 912. 排序数组 - 力扣&#xff08;LeetCode&#xff09; 2、题目介绍 给你一个整数数组 nums&#xff0c;请你将该数组升序排列。 你必须在 …...

Cocos 3.8.3 实现外描边效果(逃课玩法)

本来想着用Cocos 的Shader Graph照搬Unity的思路来加外描边&#xff0c;发现不行&#xff0c;然后我就想弄两个物体不就行了吗&#xff0c;一个是放大的版本&#xff0c;再放大的版本上加一个材质&#xff0c;这个材质面剔除选择前面的面剔除就行了&#xff0c;果不其然还真行。…...

著名建筑物检测与识别系统源码分享

著名建筑物检测与识别检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Comp…...

使用php生成图片

可以用这方法生成图片 水印 字体可以在资源绑定下载&#xff0c;如果字体路径不对&#xff0c;则不会输出文字图片 public function generateImage($text,$id) { header("Cache-Control: no-cache, must-revalidate"); header("Expires: Mon, 26 Jul 1997 05:0…...

C++ 数据类型分类

在C中&#xff0c;数据类型可以大致分为内置类型&#xff08;Built-in Types&#xff09;、标准库类型&#xff08;Standard Library Types&#xff09;和自定义类型&#xff08;User-Defined Types&#xff09;三大类。 内置类型&#xff08;Built-in Types&#xff09; 内置…...

java安装更新jdk11后设置环境JAVA_HOME

背景,已经安装成功,但是环境还是java1.8 java -version openjdk version "11.0.23" 2024-04-16 LTS OpenJDK Runtime Environment (Red_Hat-11.0.23.0.9-2.el7_9) (build 11.0.23+9-LTS) OpenJDK 64-Bit Server VM (Red_Hat-11.0.23.0.9-2.el7_9) (build 11.0.…...

Java.动态代理

1.创建一个接口 package Mydynamicproxy1;public interface Star {public abstract String sing(String str);public abstract void dance(String str); }2.创建一个BigStar类&#xff0c;要实现Star这个接口 package Mydynamicproxy1;public class BigStar implements Star{…...

SpringBoot自定义异常

前言 在前后端开发中&#xff0c;后端接口返回的数据都是JSON格式的&#xff0c;但是后端可能会出现一些可以未知从异常&#xff0c;在后端抛出这些异常的时候&#xff0c;也需要返回相同格式的JSON数据&#xff0c;这时候就需要我们设置全局异常处理器。在后端开发中&#xf…...

华为源NAT技术与目的NAT技术

1&#xff09;源NAT对报文源地址进行转换&#xff0c;分为NAT NO-PAT&#xff0c;NAPT,EASY-IP,三元组NAT&#xff1b; &#xff08;1&#xff09;NAT NO-PAT原理&#xff1a; no-port address translation:非端口地址转换&#xff1a;只转换地址&#xff0c;不转换端口&…...

人工智能与机器学习原理精解【25】

文章目录 正则化概述一、正则化的种类二、正则化的定义三、正则化的计算四、正则化的性质五、正则化的例子 公式与计算一、正则化的种类Dropout正则化一、基本思想二、实现方法三、作用机制四、使用注意事项五、总结Dropout正则化的例子和公式。一、Dropout正则化的例子二、Dro…...

一篇文章讲清楚synchronized关键字的作用及原理

概述 在应用Sychronized关键字时需要把握如下注意点&#xff1a; 一把锁只能同时被一个线程获取&#xff0c;没有获得锁的线程只能等待&#xff1b; 每个实例都对应有自己的一把锁(this),不同实例之间互不影响&#xff1b;例外&#xff1a;锁对象是*.class以及synchronized修…...

深度学习模型之BERT的24个小模型源码与预训练紧凑模型的重要性

原始信息 论文&#xff1a; Well-Read Students Learn Better: On the Importance of Pre-training Compact Models作者&#xff1a;Iulia Turc, Ming-Wei Chang, Kenton Lee, Kristina Toutanova地址&#xff1a;arxiv.org/pdf/1908.08…中文&#xff1a;阅读良好的学生学得更…...

【HarmonyOS】深入理解@Observed装饰器和@ObjectLink装饰器:嵌套类对象属性变化

【HarmonyOS】深入理解Observed装饰器和ObjectLink装饰器&#xff1a;嵌套类对象属性变化 前言 之前就Observed和ObjectLink写过一篇讲解博客【HarmonyOS】 多层嵌套对象通过ObjectLink和Observed实现渲染更新处理&#xff01; 其中就Observe监听类的使用&#xff0c;Object…...

Java笔试面试题AI答之设计模式(1)

文章目录 1. 简述什么是设计模式 &#xff1f;2. 叙述常见Java设计模式分类 &#xff1f;3. Java 设计模式的六大原则 &#xff1f;4. 简述对 MVC 的理解&#xff0c; MVC 有什么优缺点&#xff1f;MVC 的三个核心部分&#xff1a;MVC 的优点&#xff1a;MVC 的缺点&#xff1a…...

java调用opencv部署到centos7

1、官网下载opencv https://opencv.org/releases/ 2、下载opencv并解压 unzip opencv-3.4.7.zip cd opencv-3.4.7 mkdir build cd build/ 3、安装cmake yum remove cmake -y ; yum install -y gcc gcc-c make automake openssl openssl-devel wget https://cmake.org/files/…...

【python qdrant 向量数据库 完整示例代码】

测试一下python版本的dqrant向量数据库的效果&#xff0c;完整代码如下&#xff1a; 安装库 !pip install qdrant-client>1.1.1 !pip install -U sentence-transformers导入 from qdrant_client import models, QdrantClient from sentence_transformers import SentenceT…...

初识C语言(三)

感兴趣的朋友们可以留个关注&#xff0c;我们共同交流&#xff0c;相互促进学习。 文章目录 前言 八、函数 九、数组 &#xff08;1&#xff09;数组的定义 &#xff08;2&#xff09;数组的下标和使用 十、操作符 &#xff08;1&#xff09;算数操作符 &#xff08;2&#xff…...

用通义灵码如何快速合理解决遗留代码问题?

本文首先介绍了遗留代码的概念&#xff0c;并对遗留代码进行了分类。针对不同类型的遗留代码&#xff0c;提供了相应的处理策略。此外&#xff0c;本文重点介绍了通义灵码在维护遗留代码过程中能提供哪些支持。 什么是遗留代码 与过时技术相关的代码&#xff1a; 与不再受支持的…...

新书推荐——《Python贝叶斯深度学习》

在过去的十年中&#xff0c;机器学习领域取得了长足的进步&#xff0c;并因此激发了公众的想象力。但我们必须记住&#xff0c;尽管这些算法令人印象深刻&#xff0c;但它们并非完美无缺。本书旨在通过平实的语言介绍如何在深度学习中利用贝叶斯推理&#xff0c;帮助读者掌握开…...

数据结构-3.1.栈的基本概念

一.栈的定义&#xff1a; 栈和线性表的区别&#xff1a;栈只能在表尾一端进行插入或者删除的操作&#xff0c;而线性表可以在任意一个地方进行插入或者删除 二.有关栈的关键术语&#xff1a; 三.栈的基本操作&#xff1a; 1.回顾线性表的基本操作&#xff1a; 2.栈的基本操作&…...

关于 NLP 应用方向与深度训练的核心流程

文章目录 主流应用方向核心流程&#xff08;5步&#xff09;1.选定语言模型结构2.收集标注数据3.forward 正向传播4.backward 反向传播5.使用模型预测真实场景 主流应用方向 文本分类文本匹配序列标注生成式任务 核心流程&#xff08;5步&#xff09; 基本流程实现的先后顺序…...

linux如何启用ipv6随机地址

简介 在 IPv6 中&#xff0c;临时随机地址&#xff08;Temporary IPv6 Address&#xff09;是一种为了提高隐私和安全而设计的功能。通常&#xff0c;默认的 IPv6 地址是基于设备的 MAC 地址生成的&#xff0c;容易导致跟踪和识别设备。启用临时 IPv6 地址可以避免这个问题&am…...

探索 Android DataBinding:实现数据与视图的完美融合

在 Android 开发中&#xff0c;数据与视图的交互一直是一个关键的问题。为了更好地实现数据的展示和更新&#xff0c;Google 推出了 DataBinding 库&#xff0c;它为开发者提供了一种简洁、高效的方式来处理数据与视图之间的绑定关系&#xff0c;大大提高了开发效率和代码的可读…...

Java 编码系列:线程基础与最佳实践

引言 在多任务处理和并发编程中&#xff0c;线程是不可或缺的一部分。Java 提供了丰富的线程管理和并发控制机制&#xff0c;使得开发者可以轻松地实现多线程应用。本文将深入探讨 Java 线程的基础知识&#xff0c;包括 Thread 类、Runnable 接口、Callable 接口以及线程的生命…...

《深度学习》—— ResNet 残差神经网络

文章目录 一、什么是ResNet&#xff1f;二、残差结构&#xff08;Residual Structure&#xff09;三、Batch Normalization&#xff08;BN----批归一化&#xff09; 一、什么是ResNet&#xff1f; ResNet 网络是在 2015年 由微软实验室中的何凯明等几位大神提出&#xff0c;斩获…...

针对考研的C语言学习(定制化快速掌握重点3)

1.数组常见错误 数组传参实际传递的是数组的起始地址&#xff0c;若在函数中改变数组内容&#xff0c;数组本身也会发生变化 #include<stdio.h> void change_ch(char* str) {str[0] H; } int main() {char ch[] "hello";change_ch(ch);printf("%s\n&q…...

pikachu XXE(XML外部实体注入)通关

靶场&#xff1a;pikachu 环境: 系统&#xff1a;Windows10 服务器&#xff1a;PHPstudy2018 靶场&#xff1a;pikachu 关卡提示说&#xff1a;这是一个接收xml数据的api 常用的Payload 回显 <?xml version"1.0"?> <!DOCTYPE foo [ <!ENTITY …...

shell脚本定时任务通知到钉钉

shell脚本定时任务通知到钉钉 1、背景 ​ 前两天看了一下定时任务&#xff0c;垃圾清理、日志相关、系统巡检这些&#xff0c;有的服务器运行就有问题&#xff0c;或者不运行&#xff0c;正好最近在做运维标准重制运维手册&#xff0c;顺便把自动化这块优化一下&#xff0c;所…...