【数据评估与清洗】对数据结构和内容进行清洗
评估数据
- 结构方面
- 需要清理:乱数据
- 不需要清理:整洁数据
- 每列是一个变量
- 每行是一个观察值
- 每个单元格是一个值
- 内容方面
- 需要清理:脏数据
- 丢失数据
- 重复数据
- 不一致数据
- 无效或错误数据
- 不需要清理:干净数据
- 需要清理:脏数据
# 获取整体信息
df.info()
# 获取开头/结尾/随机数据来评估
df.head(10)
df.tail(10)
df.sample(10)
# 调整展示上限
pd.set_option("display.max_columns", 150)
pd.set_option("display.max_colwidth", 500)# 评估丢失数据
# 返回布尔值组成的Series或DataFrame
scores["考试2"].isnull()
df.isnull()
# 获取空缺值数量
scores["考试2"].isnull().sum()
df.isnull().sum()
# 提取丢失数据的行
scores[scores["考试2"].isnull()]# 评估重复数据
students["学号"].duplicated()
students.duplicated(subset=["学号","性别"])# 评估不一致数据
students["班级"].value_counts()# 评估无效/错误数据
# 排序
students["身高"].sort_values()
students.describe()
清洗数据
-
结构方面:更改为整洁数据结构
-
内容方面
- 丢失数据
- 人工填入缺失值
- 不处理缺失值
- 把有缺失值的行删除
- 用例如平均数等填充代替缺失值
- 重复数据:删除
- 不一致数据:统一
- 无效数据:删除或替换
- 数据类型转换
- 丢失数据
-
实际操作
# 重命名索引和列名(原变量不变,需要重新赋值或可选参数inplace=True
df1.rename(index={"2_":"2", "_5":"5", "6*":"6"})
df1.rename(columns={"2_":"2", "_5":"5", "6*":"6"})
df2.rename(index=某函数/方法)
df2.rename(columns=str.upper) # 大写
# 更多Series相关方法:https://pandas.pydata.org/docs/reference/api/pandas.Series.html
# 更多DataFrame相关方法:https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html# 重设索引
# 将列值作为索引
df3.set_index("Salesperson")
# 还原
df3.reset_index()# 对索引和列名重新排序(原变量不变,需要重新赋值或可选参数inplace=True
df4.sort_index()# 对数据进行转置
df1 = df1.T
# 对列进行拆分
df2[["人口", "面积"]] = df2["人口密度"].str.split("/", expand=True)
df2 = df2.drop("人口密度", axis=1)
# 把不同列合并成一列
df3["姓].str.cat(df3["名"], sep="-")
# 把宽数据转换成长数据(列名变成列值)
df4 = pf.melt(df4, id_vars=['不变的列名'], var_name='列名所在列列名', value_name='原列值所在列列名')
# 对行进行拆分
df5.explode("课程列表")
# 删除行,删除列(原变量不变,需要重新赋值或可选参数inplace=True
df6.drop(2)
df6.drop(["列","lie"],axis=1)# 对整列缺失值进行填充(索引定位)
df1["国家"] = "中国"
# 对某个缺失值进行填充
df2.loc["003":"004", "销售额"] = 800
# 自动找到缺失值进行填充
df4["B"].fillna(df["B"].mean())
df4.fillna(0)
df4.fillna({'A': 0, 'B': 10}) # 不同列可指定替换值
# 删除存在缺失值的行(原变量不变,需要重新赋值或可选参数inplace=True
df5.dropna()
df5.dropna(subset=["工资"]) # 控制范围
# 删除重复数据(原变量不变,需要重新赋值或可选参数inplace=True
df6["姓名"].drop_duplicates()
df6.drop_duplicates(subset=['a','b'], keep='last') #同时重复,保留最后
# 对值进行替换(不一致数据)(原变量不变,需要重新赋值或可选参数inplace=True
df7.replace(["hnu", "湖大"], "湖南大学")
df7.replace("hnu": "湖南大学")
# 对值的类型进行转换
# 分类数据建议转换为category,有利于减小内存,让Pandas自动选用合适的统计方法或图表类型
s1=pd.Series(["1","2","3"])
s1.astype("category")
保存数据(覆盖原始数据)
df1.to_csv("cleaned_sales_data.csv")
# 读取时会将索引作为第一列,需要更改列名并将其重新设置为索引# 写入时忽略索引(索引无关键信息)
df1.to_csv("cleaned_sales_data2.csv", index=False)
相关文章:

【数据评估与清洗】对数据结构和内容进行清洗
评估数据 结构方面 需要清理:乱数据不需要清理:整洁数据 每列是一个变量每行是一个观察值每个单元格是一个值 内容方面 需要清理:脏数据 丢失数据重复数据不一致数据无效或错误数据 不需要清理:干净数据 # 获取整体信息 df.in…...

机器学习和深度学习的区别
1. 基本概念 1.1 机器学习定义 机器学习是人工智能的一个核心分支,它赋予计算机系统无需明确编程即可学习和改进的能力。通过分析大量数据,机器学习算法能够识别数据中的模式和趋势,从而做出预测或决策。这种方法通常涉及统计模型和优化技术…...

UE虚幻引擎云渲染汽车动画的优势!
在汽车广告和动画制作领域,虚幻引擎(UE)结合云渲染技术正掀起一场技术革命。这项技术以其高性能、成本效益和灵活性,为创作者提供了强大的工具,以实现更加逼真和高效的汽车动画制作。 一、为什么选择UE虚幻引擎制作汽车…...

Teams集成-会议侧边栏应用开发-实时转写
Teams虽然提供了转写的接口,但是不是实时的,即便使用订阅事件也不是实时的,为了达到实时转写的效果,使用recall.ai的转录和assembly_ai的转写实现。 前提:除Teams会议侧边栏应用开发-会议转写-CSDN博客的基本要求外&a…...

归并排序,外排序,计数排序(非比较排序)
归并排序:(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序…...

使用离火插件yoloV8数据标注,模型训练
1. 启动 2.相关配置 2.1 data.yaml path: D:/yolo-tool/yaunshen-yolov8/YOLOv8ys/YOLOv8-CUDA10.2/1/datasets/ceshi001 train: images val: images names: [蔡徐坤,篮球] 2.2 cfg.yaml # Ultralytics YOLOv8, GPL-3.0 license # Default training settings and hyp…...

JavaScript 学习
一、输出 为方便调试可以输出内容,但是用户是看不到的。要在开发者模式中看。 console . log ( "Hello" ); 二、外部文件引用 可以直接在html中写JS <head> <meta charset"utf-8"> <script> console.log("he…...

【算法】分治:归并之 912.排序数组(medium)
系列专栏 双指针 模拟算法 分治思想 目录 1、题目链接 2、题目介绍 3、解法 解决方案选择 解题步骤 4、代码 1、题目链接 912. 排序数组 - 力扣(LeetCode) 2、题目介绍 给你一个整数数组 nums,请你将该数组升序排列。 你必须在 …...

Cocos 3.8.3 实现外描边效果(逃课玩法)
本来想着用Cocos 的Shader Graph照搬Unity的思路来加外描边,发现不行,然后我就想弄两个物体不就行了吗,一个是放大的版本,再放大的版本上加一个材质,这个材质面剔除选择前面的面剔除就行了,果不其然还真行。…...

著名建筑物检测与识别系统源码分享
著名建筑物检测与识别检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Comp…...

使用php生成图片
可以用这方法生成图片 水印 字体可以在资源绑定下载,如果字体路径不对,则不会输出文字图片 public function generateImage($text,$id) { header("Cache-Control: no-cache, must-revalidate"); header("Expires: Mon, 26 Jul 1997 05:0…...

C++ 数据类型分类
在C中,数据类型可以大致分为内置类型(Built-in Types)、标准库类型(Standard Library Types)和自定义类型(User-Defined Types)三大类。 内置类型(Built-in Types) 内置…...

java安装更新jdk11后设置环境JAVA_HOME
背景,已经安装成功,但是环境还是java1.8 java -version openjdk version "11.0.23" 2024-04-16 LTS OpenJDK Runtime Environment (Red_Hat-11.0.23.0.9-2.el7_9) (build 11.0.23+9-LTS) OpenJDK 64-Bit Server VM (Red_Hat-11.0.23.0.9-2.el7_9) (build 11.0.…...

Java.动态代理
1.创建一个接口 package Mydynamicproxy1;public interface Star {public abstract String sing(String str);public abstract void dance(String str); }2.创建一个BigStar类,要实现Star这个接口 package Mydynamicproxy1;public class BigStar implements Star{…...

SpringBoot自定义异常
前言 在前后端开发中,后端接口返回的数据都是JSON格式的,但是后端可能会出现一些可以未知从异常,在后端抛出这些异常的时候,也需要返回相同格式的JSON数据,这时候就需要我们设置全局异常处理器。在后端开发中…...

华为源NAT技术与目的NAT技术
1)源NAT对报文源地址进行转换,分为NAT NO-PAT,NAPT,EASY-IP,三元组NAT; (1)NAT NO-PAT原理: no-port address translation:非端口地址转换:只转换地址,不转换端口&…...

人工智能与机器学习原理精解【25】
文章目录 正则化概述一、正则化的种类二、正则化的定义三、正则化的计算四、正则化的性质五、正则化的例子 公式与计算一、正则化的种类Dropout正则化一、基本思想二、实现方法三、作用机制四、使用注意事项五、总结Dropout正则化的例子和公式。一、Dropout正则化的例子二、Dro…...

一篇文章讲清楚synchronized关键字的作用及原理
概述 在应用Sychronized关键字时需要把握如下注意点: 一把锁只能同时被一个线程获取,没有获得锁的线程只能等待; 每个实例都对应有自己的一把锁(this),不同实例之间互不影响;例外:锁对象是*.class以及synchronized修…...

深度学习模型之BERT的24个小模型源码与预训练紧凑模型的重要性
原始信息 论文: Well-Read Students Learn Better: On the Importance of Pre-training Compact Models作者:Iulia Turc, Ming-Wei Chang, Kenton Lee, Kristina Toutanova地址:arxiv.org/pdf/1908.08…中文:阅读良好的学生学得更…...

【HarmonyOS】深入理解@Observed装饰器和@ObjectLink装饰器:嵌套类对象属性变化
【HarmonyOS】深入理解Observed装饰器和ObjectLink装饰器:嵌套类对象属性变化 前言 之前就Observed和ObjectLink写过一篇讲解博客【HarmonyOS】 多层嵌套对象通过ObjectLink和Observed实现渲染更新处理! 其中就Observe监听类的使用,Object…...

Java笔试面试题AI答之设计模式(1)
文章目录 1. 简述什么是设计模式 ?2. 叙述常见Java设计模式分类 ?3. Java 设计模式的六大原则 ?4. 简述对 MVC 的理解, MVC 有什么优缺点?MVC 的三个核心部分:MVC 的优点:MVC 的缺点:…...

java调用opencv部署到centos7
1、官网下载opencv https://opencv.org/releases/ 2、下载opencv并解压 unzip opencv-3.4.7.zip cd opencv-3.4.7 mkdir build cd build/ 3、安装cmake yum remove cmake -y ; yum install -y gcc gcc-c make automake openssl openssl-devel wget https://cmake.org/files/…...

【python qdrant 向量数据库 完整示例代码】
测试一下python版本的dqrant向量数据库的效果,完整代码如下: 安装库 !pip install qdrant-client>1.1.1 !pip install -U sentence-transformers导入 from qdrant_client import models, QdrantClient from sentence_transformers import SentenceT…...

初识C语言(三)
感兴趣的朋友们可以留个关注,我们共同交流,相互促进学习。 文章目录 前言 八、函数 九、数组 (1)数组的定义 (2)数组的下标和使用 十、操作符 (1)算数操作符 (2ÿ…...

用通义灵码如何快速合理解决遗留代码问题?
本文首先介绍了遗留代码的概念,并对遗留代码进行了分类。针对不同类型的遗留代码,提供了相应的处理策略。此外,本文重点介绍了通义灵码在维护遗留代码过程中能提供哪些支持。 什么是遗留代码 与过时技术相关的代码: 与不再受支持的…...

新书推荐——《Python贝叶斯深度学习》
在过去的十年中,机器学习领域取得了长足的进步,并因此激发了公众的想象力。但我们必须记住,尽管这些算法令人印象深刻,但它们并非完美无缺。本书旨在通过平实的语言介绍如何在深度学习中利用贝叶斯推理,帮助读者掌握开…...

数据结构-3.1.栈的基本概念
一.栈的定义: 栈和线性表的区别:栈只能在表尾一端进行插入或者删除的操作,而线性表可以在任意一个地方进行插入或者删除 二.有关栈的关键术语: 三.栈的基本操作: 1.回顾线性表的基本操作: 2.栈的基本操作&…...

关于 NLP 应用方向与深度训练的核心流程
文章目录 主流应用方向核心流程(5步)1.选定语言模型结构2.收集标注数据3.forward 正向传播4.backward 反向传播5.使用模型预测真实场景 主流应用方向 文本分类文本匹配序列标注生成式任务 核心流程(5步) 基本流程实现的先后顺序…...

linux如何启用ipv6随机地址
简介 在 IPv6 中,临时随机地址(Temporary IPv6 Address)是一种为了提高隐私和安全而设计的功能。通常,默认的 IPv6 地址是基于设备的 MAC 地址生成的,容易导致跟踪和识别设备。启用临时 IPv6 地址可以避免这个问题&am…...

探索 Android DataBinding:实现数据与视图的完美融合
在 Android 开发中,数据与视图的交互一直是一个关键的问题。为了更好地实现数据的展示和更新,Google 推出了 DataBinding 库,它为开发者提供了一种简洁、高效的方式来处理数据与视图之间的绑定关系,大大提高了开发效率和代码的可读…...