算法刷题打卡第88天:字母板上的路径
字母板上的路径
难度:中等
我们从一块字母板上的位置 (0, 0)
出发,该坐标对应的字符为 board[0][0]
。
在本题里,字母板为board = ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "z"]
,如下所示。
我们可以按下面的指令规则行动:
- 如果方格存在,
'U'
意味着将我们的位置上移一行; - 如果方格存在,
'D'
意味着将我们的位置下移一行; - 如果方格存在,
'L'
意味着将我们的位置左移一列; - 如果方格存在,
'R'
意味着将我们的位置右移一列; '!'
会把在我们当前位置(r, c)
的字符board[r][c]
添加到答案中。
(注意,字母板上只存在有字母的位置。)
返回指令序列,用最小的行动次数让答案和目标 target
相同。你可以返回任何达成目标的路径。
示例 1:
输入:target = "leet"
输出:"DDR!UURRR!!DDD!"
示例 2:
输入:target = "code"
输出:"RR!DDRR!UUL!R!"
哈希表
思路:
- 根据字符输入,可以计算出对应的位置
- 根据位置左右和上下移动即可
- 需注意,移动到z只能先左右再上下,从z移动出去只能先上下再左右
复杂度分析:
- 时间复杂度: O(n)O(n)O(n),nnn 为 targettargettarget 长度
- 空间复杂度: O(c)O(c)O(c),ccc 为 262626。
class Solution:def alphabetBoardPath(self, target: str) -> str:word_dicts = dict()board = ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "z"]for x, i in enumerate(board):for y, j in enumerate(i):word_dicts[j] = [x, y]now_position = [0, 0]res = ""def lr_move(target_position, now_position, res):if target_position[1] - now_position[1] >= 0:res += 'R' * abs(target_position[1] - now_position[1])else:res += 'L' * abs(target_position[1] - now_position[1])return resdef ud_move(target_position, now_position, res):if target_position[0] - now_position[0] >= 0:res += 'D' * abs(target_position[0] - now_position[0])else:res += 'U' * abs(target_position[0] - now_position[0])return resfor i in target:target_position = word_dicts[i]if i != 'z':res = ud_move(target_position, now_position, res)res = lr_move(target_position, now_position, res)else: res = lr_move(target_position, now_position, res)res = ud_move(target_position, now_position, res)res += "!"now_position = target_positionreturn res
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/alphabet-board-path
相关文章:

算法刷题打卡第88天:字母板上的路径
字母板上的路径 难度:中等 我们从一块字母板上的位置 (0, 0) 出发,该坐标对应的字符为 board[0][0]。 在本题里,字母板为board ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "…...

UVa The Morning after Halloween 万圣节后的早晨 双向BFS
题目链接:The Morning after Halloween 题目描述: 给定一个二维矩阵,图中有障碍物和字母,你需要把小写字母移动到对应的大写字母位置,不同的小写字母可以同时移动(上下左右四个方向或者保持不动 ࿰…...
Connext DDS属性配置参考大全(3)
Transport传输dds.participant.logging.time_based_logging.process_received_messagedds.participant.logging.time_based_logging.process_received_message.timeout...

Docker-安装Jenkins-使用jenkins发版Java项目
文章目录0.前言环境背景1.操作流程1.1前期准备工作1.1.1环境变量的配置1.2使用流水线的方式进行发版1.2.1新建流水线任务1.2.2流水线操作工具tools步骤stages步骤1:拉取代码编译步骤2:发送文件并启动0.前言 学海无涯,旅“途”漫漫,“途”中小记ÿ…...
spring 中的 Bean 是否线程安全
文章目录结论1、spring中的Bean从哪里来?2、spring中什么样的Bean存在线程安全问题?3、如何处理spring Bean的线程安全问题?结论 其实,Spring 中的 Bean 是否线程安全,其实跟 Spring 容器本身无关。Spring框架中没有提…...

微电网两阶段鲁棒优化经济调度方法[3]【升级优化版本】(Matlab代码实现)
💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑…...
C++入门教程||C++ 数据类型||C++ 变量类型
C 数据类型 使用编程语言进行编程时,需要用到各种变量来存储各种信息。变量保留的是它所存储的值的内存位置。这意味着,当您创建一个变量时,就会在内存中保留一些空间。 您可能需要存储各种数据类型(比如字符型、宽字符型、整型…...

【visio使用技巧】图片导出pdf时去掉多余空白
问题 在visio导出pdf格式的图片时,往往会存在多余的白边,如下图所示: 解决方法 依次点击:菜单栏→文件→选项→自定义功能区→勾选“开发工具”→确定。 依次点击菜单栏→开发工具→显示ShapeSheet→页→Print Properties→将…...
Rust语言之Option枚举类型
概述 Option是Rust语言设计中最重要的枚举类型之一,它编码了其它语言中空值与非空值的概念,差异在于,Rust不会允许你像其它语言一样以非空值的方式来使用一个空值,这避免了很多错误。Option在标准库中的定义如下: pu…...

基于TimeQuest时序优化原理和方法
💡 回顾基于RTL逻辑时序优化的基本思路,在关键路径中插入寄存器来优化时序 分析最坏路径 通过前面对TimeQuest软件的理解,基本上可以找到关键路径,此文章主要对关键路径时序进行优化,使设计达到时序要求,以…...
LeetCode第332场周赛
2023.2.12LeetCode第332场周赛 6354. 找出数组的串联值 思路 双指针模拟,两个指针相遇的时候要特判 算法 class Solution { public:long long findTheArrayConcVal(vector<int>& nums) {long long ans 0;int i 0, j nums.size() - 1;while (i <…...

2023-2-12刷题情况
字母板上的路径 题目描述 我们从一块字母板上的位置 (0, 0) 出发,该坐标对应的字符为 board[0][0]。 在本题里,字母板为board [“abcde”, “fghij”, “klmno”, “pqrst”, “uvwxy”, “z”],如下所示。 我们可以按下面的指令规则行动…...
拉普拉斯矩阵
拉普拉斯算子 Δff(xi1,yj)f(xi−1,yj)f(xi,yj1)f(xi,yj−1)−4f(xi,yj)∑(k,l)∈N(i,j)(f(xk,yl)−f(xi,yj))\begin{aligned} \Delta f & f\left(x_{i1}, y_j\right) f\left(x_{i-1},y_j\right) f\left(x_i,y_{j1}\right)f\left(x_i,y_{j-1}\right) - 4f\left(x_i,y_j\r…...

Top-1错误率、Top-5错误率等常见的模型算法评估指标解析
Top-1 错误率:指预测输出的概率最高的类别与人工标注的类别相符的准确率,就是你预测的label取最后概率向量里面最大的那一个作为预测结果,如过你的预测结果中概率最大的那个分类正确,则预测正确,否则预测错误。比如预测…...
Urho3D 容器类型
Urho3D实现了自己的字符串类型和模板容器,而不是使用STL。其基本原理如下: 在某些情况下提高了性能,例如使用PODVector类时。保证字符串和容器的二进制大小,以允许例如嵌入Variant对象内。减少了编译时间。直接命名和实现&#x…...
C语言学习笔记(四): 循环结构程序设计
while语句 定义 While语句是C语言中的循环语句,它按条件循环执行语句,直到条件不满足为止 语法格式如下: while(condition) {//循环体内容; }使用实例 求123…100 include <stdio.h> int main(){int i 1, sum 0;while (i<100){sum i …...

02 OpenCV图像通道处理
1 通道提取与合并 在数字图像处理中,图像通道是指一个图像中的颜色信息被分离为不同的颜色分量。常见的图像通道包括RGB通道、灰度通道、HSV通道等。 RGB通道是指将图像分离为红色、绿色和蓝色三个颜色通道,每个通道表示相应颜色的亮度。这种方式是最常…...

微信小程序图书馆座位预约管理系统
开发工具:IDEA、微信小程序服务器:Tomcat9.0, jdk1.8项目构建:maven数据库:mysql5.7前端技术:vue、uniapp服务端技术:springbootmybatis本系统分微信小程序和管理后台两部分,项目采用…...

有限元分析学习一
系列文章目录 有限元分析学习一 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录系列文章目录前言一、有限元方法的简单介绍1.1 有限元的基础概念1.2 有限元软件发展历史1.3 有限元软件二、弹性力学的简单介绍2.1.…...
android avb2.0 总结
1、android vbmeta结构深入解析 2、android libavb深入解读 看完结构与代码,进一步了解了avb 比如vbmeta的结构、5种描述符、hash公钥签名存储位置 多层vbmeta结构、无vbmeta分区的验证逻辑、hash计算对比、公钥验证、签名验签、5种描述符体的处理 但是还有一些问题没有解决 如…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

spring Security对RBAC及其ABAC的支持使用
RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...

【笔记】AI Agent 项目 SUNA 部署 之 Docker 构建记录
#工作记录 构建过程记录 Microsoft Windows [Version 10.0.27871.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗ ██╗███╗ ██╗ █████╗ ██╔════╝…...