当前位置: 首页 > news >正文

vgg19提取特征

一般来说,大家使用VGG16,用的是第四列的网络架构,而使用VGG19,使用的就是第六列的网络架构。
在这里插入图片描述
使用vgg进行提取特征,在这个项目中,使用的就是每一块卷积层的第一层。

import torch.nn as nn
from torchvision import models
from torchvision.models.vgg import VGG19_Weightsclass VGGNet(nn.Module):def __init__(self):super(VGGNet, self).__init__()self.select = ['0', '5', '10', '19', '28']# self.vgg = models.vgg19(pretrained=True).features  # .features用于提取卷积层self.vgg = models.vgg19(weights=VGG19_Weights.IMAGENET1K_V1).featuresdef forward(self, x):features = []for name, layer in self.vgg._modules.items():x = layer(x)  # name为第几层的序列号,layer就是卷积层,,x为输入的图片。x = layer(x)的意思是,x经过layer层卷积后再赋值给xif name in self.select:features.append(x)return featuresnet = VGGNet()
print(net)

我们打印了一下我们定义的net

VGGNet((vgg): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(17): ReLU(inplace=True)(18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(24): ReLU(inplace=True)(25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(26): ReLU(inplace=True)(27): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(31): ReLU(inplace=True)(32): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(33): ReLU(inplace=True)(34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(35): ReLU(inplace=True)(36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
)

讲解

特征提取列表

self.select = ['0', '5', '10', '19', '28']

第一次看代码的时候,会被这个列表给迷惑住,VGG19不是只有19层吗,19层指的是除去maxpool,softmax这些层以外,卷积层和全连接层这些包含参数的层,共有19层。

但是,实际过程中,ReLU激活函数,也算在里面,因此,上文打印出来,会超过19层,因此,通过对应的索引,可以找到每块卷积的第一层。

forward函数

最简单的解释,就是将x逐层喂入神经网络,当经过的这个层刚好是每块卷积层的第一层,就将经过这层的结果保存到列表中,该结果中保存的就是图片的特征。

我们调试一下看看

import torch.nn as nn
import torch
from torchvision import models
from torchvision.models.vgg import VGG19_Weightsclass VGGNet(nn.Module):def __init__(self):super(VGGNet, self).__init__()self.select = ['0', '5', '10', '19', '28']# self.vgg = models.vgg19(pretrained=True).features  # .features用于提取卷积层self.vgg = models.vgg19(weights=VGG19_Weights.IMAGENET1K_V1).features# self.vgg = models.vgg19(weights=VGG19_Weights.IMAGENET1K_V1).featuresdef forward(self, x):features = []for name, layer in self.vgg._modules.items():x = layer(x)  # name为第几层的序列号,layer就是卷积层,,x为输入的图片。x = layer(x)的意思是,x经过layer层卷积后再赋值给xif name in self.select:features.append(x)return featuresnet = VGGNet()
print(net)
input_tensor = torch.randn(1, 3, 256, 256)
output = net(input_tensor)
print(output)

在这里插入图片描述
可以看到,里面存放的是tensor格式的数据。
所以,经过这个网络,提取了图片的特征。

相关文章:

vgg19提取特征

一般来说,大家使用VGG16,用的是第四列的网络架构,而使用VGG19,使用的就是第六列的网络架构。 使用vgg进行提取特征,在这个项目中,使用的就是每一块卷积层的第一层。 import torch.nn as nn from torchvis…...

Qt 中的 QChartView

深入理解 Qt 的 QChartView:图表展示与交互 QChartView 是 Qt Charts 模块中的一个核心类,它用于在 Qt 应用程序中显示图表,并支持多种用户交互方式。它继承自 QGraphicsView,通过封装 QChart,为用户提供了强大的图表…...

cheese安卓版纯本地离线文字识别插件

目的 cheese自动化平台是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务,节省大量人工操作的时间。可以采用Vscode、IDEA编写,支持Java、Python、nodejs、GO、Rust、Lua。cheese也包含图色功能,识别…...

【C++】多肽

目录 一 多肽定义 1. 多肽的构成条件 1 例一 2 例二 2. 虚函数 3. 虚函数重写的两个意外 1 协变 2 析构函数的重写 二 关键字override 和 final 1. final 2.override 三 三重对比 1. 练习 四 多肽的原理 1. 多肽调用和普通调用 2.虚函数表 3. 分析 4. 原理 …...

Linux下Socket编程

1. Socket简介 Socket是什么? Socket是一种进程间通信的机制,通过它应用程序可以通过网络进行数据传输。Socket提供了一种跨平台的接口,使得同样的代码可以在不同的操作系统上运行。Socket类型 流式套接字(SOCK_STREAM&#xff0…...

Scrapy 爬虫的大模型支持

使用 Scrapy 时,你可以轻松使用大型语言模型 (LLM) 来自动化或增强你的 Web 解析。 有多种使用 LLM 来帮助进行 Web 抓取的方法。在本指南中,我们将在每个页面上调用一个 LLM,从中抽取我们定义的一组属性,而无需编写任何选择器或…...

数据仓库简介(一)

数据仓库概述 1. 什么是数据仓库? 数据仓库(Data Warehouse,简称 DW)是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据,为不同层级的决策提供支持,构成…...

Kafka和RabbitMQ区别

RabbitMQ的消息延迟是微秒级,Kafka是毫秒级(1毫秒1000微秒) 延迟消息是指生产者发送消息发送消息后,不能立刻被消费者消费,需要等待指定的时间后才可以被消费。 Kafka的单机呑吐量是十万级,RabbitMQ是万级…...

go-zero学习

go-zero官网: https://go-zero.dev/docs/tasks 好文: https://blog.csdn.net/m0_63629756/article/details/136599547 视频: https://www.bilibili.com/video/BV18JxUeyECg 微服务基础 根目录下,一个文件夹就是一个微服务。如果微…...

python如何查询函数

1、通用的帮助函数help() 使用help()函数来查看函数的帮助信息。 如: import requests help(requests) 会有类似如下输出: 2、查询函数信息 ★查看模块下的所有函数: dir(module_name) #module_name是要查询的函数名 如: i…...

计算机视觉与深度学习 | 从激光雷达数据中提取地面点和非地面点(附matlab代码)

===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 激光雷达数据 使用velodyneFileReader函数从P...

vulnhub-wakanda 1靶机

vulnhub:wakanda: 1 ~ VulnHub 导入靶机,放在kali同网段,扫描 靶机在192.168.81.5,扫描端口 四个端口,详细扫描一下 似乎没什么值得注意的,先看网站 就这一个页面,点按钮也没反应,扫…...

Bilibili视频如何保存到本地

Bilibili(哔哩哔哩)作为中国领先的视频分享平台之一,汇聚了大量的优质内容,从搞笑动画、综艺节目到专业教程,应有尽有。许多用户时常会遇到这样的需求:希望将视频保存到本地,方便离线观看或者保存珍藏。由于版权保护等…...

C++之多线程

前言 多线程和多进程是并发编程的两个核心概念,它们在现代计算中都非常重要,尤其是在需要处理大量数据、提高程序性能和响应能力的场景中。 多线程的重要性: 资源利用率:多线程可以在单个进程中同时执行多个任务,这可以更有效地利用CPU资源,特别是在多核处理器上。 性…...

《C++音频降噪秘籍:让声音纯净如初》

在音频处理领域,降噪是一项至关重要的任务。无论是录制音乐、语音通话还是音频后期制作,都需要有效地去除背景噪声,以获得清晰、纯净的音频效果。在 C中实现高效的音频降噪处理,可以为音频应用带来更高的质量和更好的用户体验。本…...

C(十)for循环 --- 黑神话情景

前言: "踏过三界宝刹,阅过四洲繁华。笑过五蕴痴缠,舍过六根牵挂。怕什么欲念不休,怕什么浪迹天涯。步履不停,便是得救之法。" 国际惯例,开篇先喝碗鸡汤。 今天,杰哥写的 for 循环相…...

记录一次docker报错无法访问文件夹,权限错误问题

记录一次docker报错无法访问文件夹,权限错误问题 1. 背景 使用docker安装photoview,为其分配了一个cache目录,用户其缓存数据。在运行过程中,扫描文件后显示如下错误 could not make album image cache directory: mkdir /app/c…...

react crash course 2024(8) useEffect

引入 import { useEffect } from react; useEffect – React 中文文档useEffect 是一个 React Hook,它允许你 将组件与外部系统同步。 有些组件需要与网络、某些浏览器 API 或第三方库保持连接,当它们显示在页面上时。这些系统不受 React 控制&#xff0…...

GEE开发之Modis_NDWI数据分析和获取

GEE开发之Modis_NDWI数据分析和获取 0 数据介绍NDWI介绍MOD09GA介绍 1 NDWI天数据下载2 NDWI月数据下载3 NDWI年数据下载 前言:本文主要介绍Modis下的NDWI数据集的获取。归一化差异水指数 (NDWI) 对植被冠层液态水含量的变化很敏感。它来自近红外波段和第二个红外波…...

netty之NettyClient半包粘包处理、编码解码处理、收发数据方式

前言 Netty开发中,客户端与服务端需要保持同样的;半包粘包处理,编码解码处理、收发数据方式,这样才能保证数据通信正常。在前面NettyServer的章节中我们也同样处理了;半包粘包、编码解码等,为此在本章节我们…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子&#xff08…...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...