当前位置: 首页 > news >正文

vgg19提取特征

一般来说,大家使用VGG16,用的是第四列的网络架构,而使用VGG19,使用的就是第六列的网络架构。
在这里插入图片描述
使用vgg进行提取特征,在这个项目中,使用的就是每一块卷积层的第一层。

import torch.nn as nn
from torchvision import models
from torchvision.models.vgg import VGG19_Weightsclass VGGNet(nn.Module):def __init__(self):super(VGGNet, self).__init__()self.select = ['0', '5', '10', '19', '28']# self.vgg = models.vgg19(pretrained=True).features  # .features用于提取卷积层self.vgg = models.vgg19(weights=VGG19_Weights.IMAGENET1K_V1).featuresdef forward(self, x):features = []for name, layer in self.vgg._modules.items():x = layer(x)  # name为第几层的序列号,layer就是卷积层,,x为输入的图片。x = layer(x)的意思是,x经过layer层卷积后再赋值给xif name in self.select:features.append(x)return featuresnet = VGGNet()
print(net)

我们打印了一下我们定义的net

VGGNet((vgg): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(17): ReLU(inplace=True)(18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(24): ReLU(inplace=True)(25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(26): ReLU(inplace=True)(27): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(31): ReLU(inplace=True)(32): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(33): ReLU(inplace=True)(34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(35): ReLU(inplace=True)(36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
)

讲解

特征提取列表

self.select = ['0', '5', '10', '19', '28']

第一次看代码的时候,会被这个列表给迷惑住,VGG19不是只有19层吗,19层指的是除去maxpool,softmax这些层以外,卷积层和全连接层这些包含参数的层,共有19层。

但是,实际过程中,ReLU激活函数,也算在里面,因此,上文打印出来,会超过19层,因此,通过对应的索引,可以找到每块卷积的第一层。

forward函数

最简单的解释,就是将x逐层喂入神经网络,当经过的这个层刚好是每块卷积层的第一层,就将经过这层的结果保存到列表中,该结果中保存的就是图片的特征。

我们调试一下看看

import torch.nn as nn
import torch
from torchvision import models
from torchvision.models.vgg import VGG19_Weightsclass VGGNet(nn.Module):def __init__(self):super(VGGNet, self).__init__()self.select = ['0', '5', '10', '19', '28']# self.vgg = models.vgg19(pretrained=True).features  # .features用于提取卷积层self.vgg = models.vgg19(weights=VGG19_Weights.IMAGENET1K_V1).features# self.vgg = models.vgg19(weights=VGG19_Weights.IMAGENET1K_V1).featuresdef forward(self, x):features = []for name, layer in self.vgg._modules.items():x = layer(x)  # name为第几层的序列号,layer就是卷积层,,x为输入的图片。x = layer(x)的意思是,x经过layer层卷积后再赋值给xif name in self.select:features.append(x)return featuresnet = VGGNet()
print(net)
input_tensor = torch.randn(1, 3, 256, 256)
output = net(input_tensor)
print(output)

在这里插入图片描述
可以看到,里面存放的是tensor格式的数据。
所以,经过这个网络,提取了图片的特征。

相关文章:

vgg19提取特征

一般来说,大家使用VGG16,用的是第四列的网络架构,而使用VGG19,使用的就是第六列的网络架构。 使用vgg进行提取特征,在这个项目中,使用的就是每一块卷积层的第一层。 import torch.nn as nn from torchvis…...

Qt 中的 QChartView

深入理解 Qt 的 QChartView:图表展示与交互 QChartView 是 Qt Charts 模块中的一个核心类,它用于在 Qt 应用程序中显示图表,并支持多种用户交互方式。它继承自 QGraphicsView,通过封装 QChart,为用户提供了强大的图表…...

cheese安卓版纯本地离线文字识别插件

目的 cheese自动化平台是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务,节省大量人工操作的时间。可以采用Vscode、IDEA编写,支持Java、Python、nodejs、GO、Rust、Lua。cheese也包含图色功能,识别…...

【C++】多肽

目录 一 多肽定义 1. 多肽的构成条件 1 例一 2 例二 2. 虚函数 3. 虚函数重写的两个意外 1 协变 2 析构函数的重写 二 关键字override 和 final 1. final 2.override 三 三重对比 1. 练习 四 多肽的原理 1. 多肽调用和普通调用 2.虚函数表 3. 分析 4. 原理 …...

Linux下Socket编程

1. Socket简介 Socket是什么? Socket是一种进程间通信的机制,通过它应用程序可以通过网络进行数据传输。Socket提供了一种跨平台的接口,使得同样的代码可以在不同的操作系统上运行。Socket类型 流式套接字(SOCK_STREAM&#xff0…...

Scrapy 爬虫的大模型支持

使用 Scrapy 时,你可以轻松使用大型语言模型 (LLM) 来自动化或增强你的 Web 解析。 有多种使用 LLM 来帮助进行 Web 抓取的方法。在本指南中,我们将在每个页面上调用一个 LLM,从中抽取我们定义的一组属性,而无需编写任何选择器或…...

数据仓库简介(一)

数据仓库概述 1. 什么是数据仓库? 数据仓库(Data Warehouse,简称 DW)是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据,为不同层级的决策提供支持,构成…...

Kafka和RabbitMQ区别

RabbitMQ的消息延迟是微秒级,Kafka是毫秒级(1毫秒1000微秒) 延迟消息是指生产者发送消息发送消息后,不能立刻被消费者消费,需要等待指定的时间后才可以被消费。 Kafka的单机呑吐量是十万级,RabbitMQ是万级…...

go-zero学习

go-zero官网: https://go-zero.dev/docs/tasks 好文: https://blog.csdn.net/m0_63629756/article/details/136599547 视频: https://www.bilibili.com/video/BV18JxUeyECg 微服务基础 根目录下,一个文件夹就是一个微服务。如果微…...

python如何查询函数

1、通用的帮助函数help() 使用help()函数来查看函数的帮助信息。 如: import requests help(requests) 会有类似如下输出: 2、查询函数信息 ★查看模块下的所有函数: dir(module_name) #module_name是要查询的函数名 如: i…...

计算机视觉与深度学习 | 从激光雷达数据中提取地面点和非地面点(附matlab代码)

===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 激光雷达数据 使用velodyneFileReader函数从P...

vulnhub-wakanda 1靶机

vulnhub:wakanda: 1 ~ VulnHub 导入靶机,放在kali同网段,扫描 靶机在192.168.81.5,扫描端口 四个端口,详细扫描一下 似乎没什么值得注意的,先看网站 就这一个页面,点按钮也没反应,扫…...

Bilibili视频如何保存到本地

Bilibili(哔哩哔哩)作为中国领先的视频分享平台之一,汇聚了大量的优质内容,从搞笑动画、综艺节目到专业教程,应有尽有。许多用户时常会遇到这样的需求:希望将视频保存到本地,方便离线观看或者保存珍藏。由于版权保护等…...

C++之多线程

前言 多线程和多进程是并发编程的两个核心概念,它们在现代计算中都非常重要,尤其是在需要处理大量数据、提高程序性能和响应能力的场景中。 多线程的重要性: 资源利用率:多线程可以在单个进程中同时执行多个任务,这可以更有效地利用CPU资源,特别是在多核处理器上。 性…...

《C++音频降噪秘籍:让声音纯净如初》

在音频处理领域,降噪是一项至关重要的任务。无论是录制音乐、语音通话还是音频后期制作,都需要有效地去除背景噪声,以获得清晰、纯净的音频效果。在 C中实现高效的音频降噪处理,可以为音频应用带来更高的质量和更好的用户体验。本…...

C(十)for循环 --- 黑神话情景

前言: "踏过三界宝刹,阅过四洲繁华。笑过五蕴痴缠,舍过六根牵挂。怕什么欲念不休,怕什么浪迹天涯。步履不停,便是得救之法。" 国际惯例,开篇先喝碗鸡汤。 今天,杰哥写的 for 循环相…...

记录一次docker报错无法访问文件夹,权限错误问题

记录一次docker报错无法访问文件夹,权限错误问题 1. 背景 使用docker安装photoview,为其分配了一个cache目录,用户其缓存数据。在运行过程中,扫描文件后显示如下错误 could not make album image cache directory: mkdir /app/c…...

react crash course 2024(8) useEffect

引入 import { useEffect } from react; useEffect – React 中文文档useEffect 是一个 React Hook,它允许你 将组件与外部系统同步。 有些组件需要与网络、某些浏览器 API 或第三方库保持连接,当它们显示在页面上时。这些系统不受 React 控制&#xff0…...

GEE开发之Modis_NDWI数据分析和获取

GEE开发之Modis_NDWI数据分析和获取 0 数据介绍NDWI介绍MOD09GA介绍 1 NDWI天数据下载2 NDWI月数据下载3 NDWI年数据下载 前言:本文主要介绍Modis下的NDWI数据集的获取。归一化差异水指数 (NDWI) 对植被冠层液态水含量的变化很敏感。它来自近红外波段和第二个红外波…...

netty之NettyClient半包粘包处理、编码解码处理、收发数据方式

前言 Netty开发中,客户端与服务端需要保持同样的;半包粘包处理,编码解码处理、收发数据方式,这样才能保证数据通信正常。在前面NettyServer的章节中我们也同样处理了;半包粘包、编码解码等,为此在本章节我们…...

Linux:文件描述符介绍

文章目录速览 1、虚拟地址空间(1)What(什么是虚拟地址空间)(2)Why(为什么需要虚拟地址空间) 2、文件描述符(1)What(什么是文件描述符)(2)文件描述符表 1、虚拟地址空间 (1)What(什么是虚拟地址…...

stm32f103调试,程序与定时器同步设置

在调试定时器相关代码时,注意到定时器的中断位总是置1,怀疑代码有问题,经过增大定时器的中断时间,发现定时器与代码调试并不同步,这一点对于调试涉及定时器的代码是非常不利的,这里给出keil调试stm32使定时…...

《Python编程:从入门到实践》数据可视化

一、项目 数据可视化学习 二、库依赖 matplotlib,pygal, 三、生成数据 1.绘制简单的折线图 import matplotlib.pyplot as pltsquares [1, 4, 9, 16, 25] plt.plot(squares) plt.show() 模块pyplot包含很多用于生成图表的函数。 (1&am…...

github/git密钥配置与使用

零、前言 因为要在ubuntu上做点东西,发现git clone 的时候必须输账户密码,后来发现密码是token,但是token一大串太烦了,忙了一天发现可以通过配置 公钥 来 替代 http 的 部署方式。 一、生成 ssh 密钥对 我们先测试下能不能 连接…...

BiLSTM模型实现电力数据预测

基础模型见:A020-LSTM模型实现电力数据预测 1. 引言 时间序列预测在电力系统管理、负荷预测和能源优化等领域具有重要意义。传统的单向长短期记忆网络(LSTM)因其在处理时间序列数据中的优势,广泛应用于此类任务。然而&#xff0…...

VMware ESXi 6.7U3u macOS Unlocker 集成驱动版更新 OEM BIOS 2.7 支持 Windows Server 2025

VMware ESXi 6.7U3u macOS Unlocker & OEM BIOS 2.7 集成 Realtek 网卡驱动和 NVMe 驱动 (集成驱动版) UI fix 此版本解决的问题:VMware Host Client 无法将现有虚拟磁盘 (VMDK) 附加到虚拟机 请访问原文链接:https://sysin.org/blog/vmware-esxi-…...

一个简单的SQL面试题

最近面试遇到一个SQL题,复述如下: SQL面试题 现在有两张表,结构如下: 学生表(student) 学号sid姓名name1张三2李四3王五 成绩表(score) 序号id学号sid科目subject分数score11语…...

网站服务器在不同操作系统上监听端口情况的方法

网站服务器监听端口的情况通常需要通过一些命令行工具来进行检查,这样可以查看哪些进程在监听特定的端口,以及它们的状态。以下是在不同操作系统上可以使用的几种方法: Windows系统 1. 使用netstat命令 打开命令提示符(cmd),然后输…...

RabbitMQ篇(基本介绍)

目录 一、MQ 1. 什么是MQ 2. 为什么要用MQ【业务场景】 2.1. 异步 2.2. 应用解耦 2.3. 流量削峰 3. MQ的分类 (1)ActiveMQ (2)Kafka (3)RocketMQ (4)RabbitMQ 4. MQ 的选…...

浅谈网络通信中的透传和非透传

在网络通信中,透传(Transparent Transmission)和非透传(Non-Transparent Transmission)是两种不同的数据传输模式,尤其在使用ESP8266这类WiFi模块时,这两种模式有其特定的应用场景: …...

富锦网站制作/网站排名大全

2012年度IT博客大赛自10月18日正式启动以来,受到了广大IT业界人士及博主们的关注和参与,参赛博主大多拥有高深的技术、丰富的从业经验、在各自擅长的技术领域内占有一席之地。本文将和大家分享参加大赛的IOS、WP技术领域的博主。 随着手机、平板电脑等各…...

ffmpeg做视频网站/应用宝aso优化

封装对集合成员的添加和删除操作有很多好处&#xff0c;所以成了一个惯用法。包括提供一个只读的getter和AddXX()、 RemoveXX()函数&#xff1a; publicclassPerson { privateIList<Car>_cars newList<Car>(); publicIList<Car>Cars { …...

儋州市住房和城乡建设局官方网站/百度推广上班怎么样

DeepLog: 基于深度学习对系统日志进行异常检测和诊断 Min Du, Feifei Li, Guineng Zheng, Vivek Srikumar School of Computing, University of Utah {mind, lifeifei, guineng, svivek}@cs.utah.edu 摘要 异常检测是构建安全可靠系统的关键步骤。系统日志的主要目的是记录系…...

城市网站联盟/外贸建站网站推广

函数式接口 定义&#xff1a;如果一个接口只有一个抽象方法&#xff0c;则这个接口就是函数式接口&#xff0c;函数式接口可以使用Lambda表达式&#xff0c;Lambda表达式会被匹配到这个抽象方法上 FunctionnalInterface注可以用来检测接口是否符合函数式接口 常见的函数式接口…...

中国建设工程信息网官网建造师查询/网站如何优化一个关键词

软件工程(一)考试科目&#xff1a;公共英语、计算机基础理论、C语言程序设计(二)参考书目和考试大纲考试科目1&#xff1a;计算机基础理论【参考书目】《大学计算机信息技术教程》&#xff0c;作者&#xff1a;张福炎、孙志挥&#xff0c;出版社&#xff1a;南京大学出版社【考…...

唐河网站制作/爱站网官网

转自&#xff1a;http://www.elecfans.com/baike/tongxingjishu/wuxiantongxin/20180412660765.html esp8266介绍 esp8266是一个具有WiFi功能的开发板&#xff0c;它是由一家名为乐鑫的科技公司所设计&#xff0c;在由安信可科技公司负责生产&#xff0c;在以前要买到具有WiFi功…...