当前位置: 首页 > news >正文

深度强化学习中收敛图的横坐标是steps还是episode?

在深度强化学习(Deep Reinforcement Learning, DRL)的收敛图中,横坐标选择 steps 或者 episodes 主要取决于算法的设计和实验的需求,两者的差异和使用场景如下:

  1. Steps(步数):

    • 定义:一个 step 通常指的是在环境中执行一次动作并收到一次反馈(即状态转移和奖励)。因此,steps 代表的是智能体与环境交互的总次数。
    • 使用场景:当我们关心算法每一步(action)如何影响学习效果,或想评估算法在更细粒度时间尺度下的学习过程时,常用 steps 作为横坐标。对于一些环境来说,steps 可以更好地反映学习的进展,尤其是当每个 episode 的长度不固定或差异较大时,steps 会提供更一致的度量。
    • 适用算法:比如在一些连续控制任务中,steps 更有意义,因为这些任务中的 episode 可能较长或很难明确划分。
  2. Episodes(回合):

    • 定义:一个 episode 是智能体从环境的初始状态开始执行动作,直到到达终止状态(例如游戏结束、目标达成、或者智能体失败等)。一个 episode 包含了多个 steps。
    • 使用场景:当我们关心智能体在整个任务中的表现变化时,episodes 作为横坐标更常见。通常,用于表示算法在完成完整任务(例如游戏、导航等)过程中逐渐收敛的情况,适合于那些有明确开始和结束的任务。
    • 适用算法:例如在基于离散动作空间的任务(如游戏、迷宫导航等)中,episodes 更容易反映智能体在每次尝试完成任务时的表现。

选择依据:

  • 任务的结构:如果任务有明确的回合(例如一个游戏关卡),那么使用 episodes 更直观。如果任务没有明显的回合,或者回合长度变化较大,steps 可能是更好的选择。
  • 评估目标:如果你想观察智能体在每一个决策点的学习情况,用 steps 可能更合适;如果你更关注智能体在整个任务(回合)中的学习进展,episodes 会更合理。
  • 算法特点:一些算法可能对每步的细粒度表现(如 steps)更加敏感,而另一些算法则关注整体表现(如 episodes)。

简而言之,steps 适用于精细粒度的分析,episodes 适用于较高层次的任务表现分析。

相关文章:

深度强化学习中收敛图的横坐标是steps还是episode?

在深度强化学习(Deep Reinforcement Learning, DRL)的收敛图中,横坐标选择 steps 或者 episodes 主要取决于算法的设计和实验的需求,两者的差异和使用场景如下: Steps(步数): 定义&a…...

一个真实可用的登录界面!

需要工具: MySQL数据库、vscode上的php插件PHP Server等 项目结构: login | --backend | --database.sql |--login.php |--welcome.php |--index.html |--script.js |--style.css 项目开展 index.html: 首先需要一个静态网页&#x…...

Vue中watch监听属性的一些应用总结

【1】vue2中watch的应用 ① 简单监视 在 Vue 2 中,如果你不需要深度监视,即只需监听顶层属性的变化,可以使用简写形式来定义 watch。这种方式更加简洁,适用于大多数基本场景。 示例代码 假设你有一个 Vue 组件,其中…...

MongoDB-aggregate流式计算:带条件的关联查询使用案例分析

在数据库的查询中,是一定会遇到表关联查询的。当两张大表关联时,时常会遇到性能和资源问题。这篇文章就是用一个例子来分享MongoDB带条件的关联查询发挥的作用。 假设工作环境中有两张MongoDB集合:SC_DATA(学生基本信息集合&…...

Redis数据库与GO(一):安装,string,hash

安装包地址:https://github.com/tporadowski/redis/releases 建议下载zip版本,解压即可使用。解压后,依次打开目录下的redis-server.exe和redis-cli.exe,redis-cli.exe用于输入指令。 一、基本结构 如图,redis对外有个…...

expressjs,实现上传图片,返回图片链接

在 Express.js 中实现图片上传并返回图片链接,你通常需要使用一个中间件来处理文件上传,比如 multer。multer 是一个 node.js 的中间件,用于处理 multipart/form-data 类型的表单数据,主要用于上传文件。 以下是一个简单的示例&a…...

爬虫——XPath基本用法

第一章XML 一、xml简介 1.什么是XML? 1,XML指可扩展标记语言 2,XML是一种标记语言,类似于HTML 3,XML的设计宗旨是传输数据,而非显示数据 4,XML标签需要我们自己自定义 5,XML被…...

常见排序算法汇总

排序算法汇总 这篇文章说明下排序算法,直接开始。 1.冒泡排序 最简单直观的排序算法了,新手入门的第一个排序算法,也非常直观,最大的数字像泡泡一样一个个的“冒”到数组的最后面。 算法思想:反复遍历要排序的序列…...

Golang | Leetcode Golang题解之第459题重复的子字符串

题目&#xff1a; 题解&#xff1a; func repeatedSubstringPattern(s string) bool {return kmp(s s, s) }func kmp(query, pattern string) bool {n, m : len(query), len(pattern)fail : make([]int, m)for i : 0; i < m; i {fail[i] -1}for i : 1; i < m; i {j : …...

0.计网和操作系统

0.计网和操作系统 熟悉计算机网络和操作系统知识&#xff0c;包括 TCP/IP、UDP、HTTP、DNS 协议等。 常见的页面置换算法&#xff1a; 先进先出&#xff08;FIFO&#xff09;算法&#xff1a;将最早进入内存的页面替换出去。最近最少使用&#xff08;LRU&#xff09;算法&am…...

探索Prompt Engineering:开启大型语言模型潜力的钥匙

前言 什么是Prompt&#xff1f;Prompt Engineering? Prompt可以理解为向语言模型提出的问题或者指令&#xff0c;它是激发模型产生特定类型响应的“触发器”。 Prompt Engineering&#xff0c;即提示工程&#xff0c;是近年来随着大型语言模型&#xff08;LLM&#xff0c;Larg…...

滚雪球学Oracle[3.3讲]:数据定义语言(DDL)

全文目录&#xff1a; 前言一、约束的高级使用1.1 主键&#xff08;Primary Key&#xff09;案例演示&#xff1a;定义主键 1.2 唯一性约束&#xff08;Unique&#xff09;案例演示&#xff1a;定义唯一性约束 1.3 外键&#xff08;Foreign Key&#xff09;案例演示&#xff1a…...

ssrf学习(ctfhub靶场)

ssrf练习 目录 ssrf类型 漏洞形成原理&#xff08;来自网络&#xff09; 靶场题目 第一题&#xff08;url探测网站下文件&#xff09; 第二关&#xff08;使用伪协议&#xff09; 关于http和file协议的理解 file协议 http协议 第三关&#xff08;端口扫描&#xff09…...

ElasticSearch之网络配置

对官方文档Networking的阅读笔记。 ES集群中的节点&#xff0c;支持处理两类通信平面 集群内节点之间的通信&#xff0c;官方文档称之为transport layer。集群外的通信&#xff0c;处理客户端下发的请求&#xff0c;比如数据的CRUD&#xff0c;检索等&#xff0c;官方文档称之…...

【C语言进阶】系统测试与调试

1. 引言 在开始本教程的深度学习之前&#xff0c;我们需要了解整个教程的目标及其结构&#xff0c;以及为何进阶学习是提升C语言技能的关键。 目标和结构&#xff1a; 教程目标&#xff1a;本教程旨在通过系统化的学习&#xff0c;从单元测试、系统集成测试到调试技巧&#xf…...

多个单链表的合成

建立两个非递减有序单链表&#xff0c;然后合并成一个非递增有序的单链表。 注意&#xff1a;建立非递减有序的单链表&#xff0c;需要采用创建单链表的算法 输入格式: 1 9 5 7 3 0 2 8 4 6 0 输出格式: 9 8 7 6 5 4 3 2 1 输入样例: 在这里给出一组输入。例如&#xf…...

『建议收藏』ChatGPT Canvas功能进阶使用指南!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;专注于分享AI全维度知识&#xff0c;包括但不限于AI科普&#xff0c;AI工…...

Ollama 运行视觉语言模型LLaVA

Ollama的LLaVA&#xff08;大型语言和视觉助手&#xff09;模型集已更新至 1.6 版&#xff0c;支持&#xff1a; 更高的图像分辨率&#xff1a;支持高达 4 倍的像素&#xff0c;使模型能够掌握更多细节。改进的文本识别和推理能力&#xff1a;在附加文档、图表和图表数据集上进…...

gdb 调试 linux 应用程序的技巧介绍

使用 gdb 来调试 Linux 应用程序时&#xff0c;可以显著提高开发和调试的效率。gdb&#xff08;GNU 调试器&#xff09;是一款功能强大的调试工具&#xff0c;适用于调试各类 C、C 程序。它允许我们在运行程序时检查其状态&#xff0c;设置断点&#xff0c;跟踪变量值的变化&am…...

Java项目实战II基于Java+Spring Boot+MySQL的房产销售系统(源码+数据库+文档)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者 一、前言 随着房地产市场的蓬勃发展&#xff0c;房产销售业务日益复杂&#xff0c;传统的手工管理方式已难以满…...

aws(学习笔记第一课) AWS CLI,创建ec2 server以及drawio进行aws画图

aws(学习笔记第一课) 使用AWS CLI 学习内容&#xff1a; 使用AWS CLI配置密钥对创建ec2 server使用drawio&#xff08;vscode插件&#xff09;进行AWS的画图 1. 使用AWS CLI 注册AWS账号 AWS是通用的云计算平台&#xff0c;可以提供ec2&#xff0c;vpc&#xff0c;SNS以及clo…...

【Python】Eventlet 异步网络库简介

Eventlet 是一个 Python 的异步网络库&#xff0c;它使用协程&#xff08;green threads&#xff09;来简化并发编程。通过非阻塞的 I/O 操作&#xff0c;Eventlet 使得你可以轻松编写高性能的网络应用程序&#xff0c;而无需处理复杂的回调逻辑或编写多线程代码。它广泛应用于…...

【JNI】数组的基本使用

在上一期讲了基本类型的基本使用&#xff0c;这期来说一说数组的基本使用 HelloJNI.java&#xff1a;实现myArray函数&#xff0c;把一个整型数组转换为双精度型数组 public class HelloJNI { static {System.loadLibrary("hello"); }private native String HelloW…...

React跨平台

React的跨平台应用开发详解如下&#xff1a; 一、跨平台能力 React本身是一个用于构建用户界面的JavaScript库&#xff0c;但它通过React Native等框架实现了跨平台应用开发的能力。React Native允许开发者使用JavaScript和React来编写原生应用&#xff0c;这些应用可以在iOS和…...

如何在 SQL 中更新表中的记录?

当你需要修改数据库中已存在的数据时&#xff0c;UPDATE 语句是你的首选工具。 这允许你更改表中一条或多条记录的特定字段值。 下面我将详细介绍如何使用 UPDATE 语句&#xff0c;并提供一些开发建议和注意事项。 基础用法 假设我们有一个名为 employees 的表&#xff0c;…...

宠物饮水机的水箱低液位提醒如何实现?

ICMAN液位检测芯片轻松实现宠物饮水机的水箱低液位提醒功能&#xff01; 工作原理 &#xff1a; 基于双通道电容式单点液位检测原理 方案特点&#xff1a; 液位检测精度高达1mm&#xff0c;超强抗干扰&#xff0c;动态CS 10V 为家用电器水位提醒的应用提供了一种简单而又有…...

EXCEL_光标百分比

Public Sub InitCells()Dim iSheet As LongFor iSheet Sheets.Count To 1 Step -1Sheets(iSheet).ActivateActiveWindow.Zoom 85ActiveWindow.ScrollRow 1ActiveWindow.ScrollColumn 1Sheets(iSheet).Range("A1").ActivateNext iSheetEnd Sub对日项目中的文档满天…...

(一)Web 网站服务之 Apache

一、Apache 的作用和特点 作用&#xff1a;Apache 是一款开源的网站服务器端软件&#xff0c;为网站的运行提供了稳定的基础。特点&#xff1a; 开源免费&#xff1a;这使得任何人都可以免费使用和修改它。模块化设计&#xff1a;具有高度的灵活性&#xff0c;可以根据需求选择…...

英语词汇小程序小程序|英语词汇小程序系统|基于java的四六级词汇小程序设计与实现(源码+数据库+文档)

英语词汇小程序 目录 基于java的四六级词汇小程序设计与实现 一、前言 二、系统功能设计 三、系统实现 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1a;✌️大厂码农|毕设布道师&a…...

AI学习指南深度学习篇-学习率衰减的实现机制

AI学习指南深度学习篇-学习率衰减的实现机制 前言 在深度学习中&#xff0c;学习率是影响模型训练的重要超参数之一。合理的学习率设置不仅可以加速模型收敛&#xff0c;还可以避免训练过程中出现各种问题&#xff0c;如过拟合或训练不收敛。学习率衰减是一种动态调整学习率的…...