当前位置: 首页 > news >正文

QLoRA代码实战

QLoRA原理参考:
BiliBili:4bit量化与QLoRA模型训练
zhihu:QLoRA(Quantized LoRA)详解

下载llama3-8b模型

from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Meta-Llama-3-8B-Instruct')

设置quantization_config

from transformers import BitsAndBytesConfigquantization_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type="nf4",bnb_4bit_use_double_quant=True,bnb_4bit_compute_dtype=torch.bfloat16,
)

加载模型

加载量化后的llama3-8b模型,大概需要6G的GPU显存。

from transformers import AutoModelForCausalLM,AutoTokenizer,TrainingArguments,Trainer,DataCollatorForSeq2Seq
model = AutoModelForCausalLM.from_pretrained(model_dir,quantization_config=quantization_config,low_cpu_mem_usage=True)
tokenizer = AutoTokenizer.from_pretrained(model_dir)

一层的数据类型,可以看到除了layernorm,linear层都进行了量化。

model.layers.0.self_attn.q_proj.weight torch.uint8
model.layers.0.self_attn.k_proj.weight torch.uint8
model.layers.0.self_attn.v_proj.weight torch.uint8
model.layers.0.self_attn.o_proj.weight torch.uint8
model.layers.0.mlp.gate_proj.weight torch.uint8
model.layers.0.mlp.up_proj.weight torch.uint8
model.layers.0.mlp.down_proj.weight torch.uint8
model.layers.0.input_layernorm.weight torch.float16
model.layers.0.post_attention_layernorm.weight torch.float16

预处理模型

from peft import prepare_model_for_kbit_training
model = prepare_model_for_kbit_training(model)

设置LoRA参数

这里使用了默认设置,参数target_modules和modules_to_save可以设置具体训练哪些模块。
在peft/utils/constants.py中,默认定义了各种模型的LoRA target modules,llama模型对Q和V进行lora。

"llama": ["q_proj", "v_proj"],
config = LoraConfig(task_type=TaskType.CAUSAL_LM)
model = get_peft_model(model, config)
model.print_trainable_parameters()
#trainable params: 3,407,872 || all params: 8,033,669,120 || trainable%: 0.0424
print(model) #加入了LoRA后的模型结构。

加载并处理数据

数据下载:AI-ModelScope/alpaca-gpt4-data-zh
需要把下载的数据中dataset_infos.json 重命名为datasets_info.json,这样才能正确加载。

from datasets import load_datasetdataset = load_dataset("alpaca-data-zh")def process_func(example):# print(example)MAX_LENGTH = 256input_ids, attention_mask, labels = [], [], []# 将prompt进行tokenize,这里我们没有利用tokenizer进行填充和截断# 这里我们自己进行截断,在DataLoader的collate_fn函数中进行填充input = example["input"] if example["input"] is not None else ''instruction = tokenizer("\n".join(["Human: " + example["instruction"], input]).strip() + "\n\nAssistant: ")# 将output进行tokenize,注意添加eos_tokenresponse = tokenizer(example["output"] + tokenizer.eos_token)# 将instruction + output组合为inputinput_ids = instruction["input_ids"] + response["input_ids"]attention_mask = instruction["attention_mask"] + response["attention_mask"]# prompt设置为-100,不计算losslabels = [-100] * len(instruction["input_ids"]) + response["input_ids"]# 设置最大长度,进行截断if len(input_ids) > MAX_LENGTH:input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}tokenized_ds = dataset['train'].map(process_func, remove_columns=dataset['train'].column_names)

设置TrainingArguments

在per_device_train_batch_size=1的情况下,大概需要9G显存。

args = TrainingArguments(output_dir="./llama3_4bit",per_device_train_batch_size=4,gradient_accumulation_steps=32,logging_steps=10,num_train_epochs=1,save_strategy='epoch',learning_rate=1e-4,# gradient_checkpointing=True,# optim="paged_adamw_32bit")

训练

trainer = Trainer(model=model,args=args,tokenizer=tokenizer,train_dataset=tokenized_ds,data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train(resume_from_checkpoint=False)

加载qlora

from transformers import AutoModelForCausalLM,AutoTokenizer
model_path = model_dir #llama3-8b的路径
model = AutoModelForCausalLM.from_pretrained(model_path,quantization_config=config,low_cpu_mem_usage=True)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model_qlora = PeftModel.from_pretrained(model=model,model_id="llama3_4bit/checkpoint-7") #qlora路径
#预测
ipt = tokenizer("Human: {}\n{}".format("怎么学习llm", "").strip() + "\n\nAssistant: ", return_tensors="pt").to(model.device)
tokenizer.decode(model_qlora.generate(**ipt, max_length=128, do_sample=True)[0], skip_special_tokens=True)

合并LoRA

合并后的模型大概5.4G。

merge_model = model_qlora.merge_and_unload()
merge_model.save_pretrained("llama3")

相关文章:

QLoRA代码实战

QLoRA原理参考: BiliBili:4bit量化与QLoRA模型训练 zhihu:QLoRA(Quantized LoRA)详解 下载llama3-8b模型 from modelscope import snapshot_download model_dir snapshot_download(LLM-Research/Meta-Llama-3-8B-In…...

pyqt QGraphicsView 以鼠标为中心进行缩放

注意几个关键点: 1. 初始化 class CustomGraphicsView(QGraphicsView):def __init__(self, parentNone):super(CustomGraphicsView, self).__init__(parent)self.scene QGraphicsScene()self.setScene(self.scene)self.setGeometry(0, 0, 1024, 600)# 以下初始化…...

FPGA-Vivado-IP核-逻辑分析仪(ILA)

ILA IP核 背景介绍 在用FPGA做工程项目时,当Verilog代码写好,我们需要对代码里面的一些关键信号进行上板验证查看。首先,我们可以把需要查看的这些关键信号引出来,接好线通过示波器进行实时监测,但这会用到大量的线材…...

基于webComponents的纯原生前端框架

我本人的个人开发web前端前框架xui,正在开发中,业已完成50%的核心开发工作,并且在开发过程中逐渐完善. 目前框架未采用任何和市面上框架模式,没有打包过程,实现真实的开箱即用。 当然在开发过程中也会发现没有打包工…...

OpenCV-背景建模

文章目录 一、背景建模的目的二、背景建模的方法及原理三、背景建模实现四、总结 OpenCV中的背景建模是一种在计算机视觉中从视频序列中提取出静态背景的技术。以下是对OpenCV背景建模的详细解释: 一、背景建模的目的 背景建模的主要目标是将动态的前景对象与静态的…...

一个简单的摄像头应用程序6

主要改进点: 使用 ThreadPoolExecutor 管理多线程: 使用 concurrent.futures.ThreadPoolExecutor 来管理多线程,这样可以更高效地处理图像。 在 main 函数中创建一个 ThreadPoolExecutor,并在每个循环中提交图像处理任务。 减少…...

Pikachu-目录遍历

目录遍历,跟不安全文件上传下载有差不多; 访问 jarheads.php 、truman.php 都是通过 get 请求,往title 参数传参; 在后台,可以看到 jarheads.php 、truman.php所在目录: /var/www/html/vul/dir/soup 图片…...

用Python实现基于Flask的简单Web应用:从零开始构建个人博客

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 前言 在现代Web开发中,Python因其简洁、易用以及丰富的库生态系统,成为了许多开发者的首选编程语言。Flask作为一个轻量级的Python Web框架,以其简洁和灵活性深受开…...

IDEA的lombok插件不生效了?!!

记录一下,防止找不到解决方案,已经遇到好几次了 前面啰嗦的多,可以直接跳到末尾的解决方法,点击一下 问题现场情况 排查过程 确认引入的依赖正常 —》🆗 idea 是否安装了lombok插件 --》🆗 貌似没有问题…...

CSP-S 2022 T1假期计划

CSP-S 2022 T1假期计划 先思考暴力做法,题目需要找到四个不相同的景点,那我们就枚举这四个景点,判断它们之间的距离是否符合条件,条件是任意两个点之间的距离是否大于 k k k,所以我们需要求出任意两点之间的距离。常用…...

为什么要学习大模型?AI在把传统软件当早餐吃掉?

前言 上周末在推特平台上有一篇写在谷歌文档里的短文,在国外的科技/投资圈得到了非常广泛的浏览,叫做 The End of Software(软件的终结), 作者 Chris Paik 是位于纽约市的风险投资基金 Pace Capital 的创始合伙人&…...

全流程Python编程、机器学习与深度学习实践技术应用

近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其…...

pWnos1.0 靶机渗透 (Perl CGI 的反弹 shell 利用)

靶机介绍 来自 vulnhub 主机发现 ┌──(kali㉿kali)-[~/testPwnos1.0] …...

jquery on() 函数绑定无效

on 前面的元素必须在页面加载的时候就存在于 dom 里面。动态的元素或者样式等&#xff0c;可以放在 on 的第二个参数里面。jQuery on() 方法是官方推荐的绑定事件的一个方法。使用 on() 方法可以给将来动态创建的动态元素绑定指定的事件&#xff0c;例如 append 等。 <div …...

数字化转型与企业创新的双向驱动

数字化转型与企业创新的双向驱动 在全球化的竞争环境中&#xff0c;数字化转型已成为企业保持竞争力的重要手段。未来几年&#xff0c;随着信息技术的进一步发展&#xff0c;数字化转型将不仅限于IT部门&#xff0c;而是深入到企业的各个业务层面&#xff0c;推动创新和效率的…...

[uni-app]小兔鲜-07订单+支付

订单模块 基本信息渲染 import type { OrderState } from /services/constants import type { AddressItem } from ./address import type { PageParams } from /types/global/** 获取预付订单 返回信息 */ export type OrderPreResult {/** 商品集合 [ 商品信息 ] */goods: …...

Oracle数据库中表压缩的实现方式和特点

Oracle数据库中表压缩的实现方式和特点 在 Oracle 数据库中&#xff0c;表压缩是一项重要的功能&#xff0c;旨在优化存储空间和提高性能。Oracle 提供了多种表压缩技术&#xff0c;以适应不同的应用场景和需求。以下是 Oracle 数据库中表压缩的实现方式和特点&#xff1a; 1…...

【C语言】基础篇

简单输出“helloword” #include<stdio.h> int main(){printf("hello world!");return 0; } 和与商 #include<stdio.h> int main(){int a,b,sum,quotient;printf("Enter two numbers:");scanf("%d %d",&a,&b);sum a b…...

Meta MovieGen AI:颠覆性的文本生成视频技术详解

近年来&#xff0c;生成式AI技术的发展迅猛&#xff0c;尤其是在文本生成图像、文本生成视频等领域。Meta公司近期推出的MovieGen AI&#xff0c;以其强大的文本生成视频能力震撼了整个AI行业。本文将详细解读Meta MovieGen AI的核心技术、功能特性及其在实际应用中的潜力。 一…...

个人文章合集 - 前端相关

前端&#xff1a;简述表单提交前如何进行数据验证 前端&#xff1a;项目一个html中如何引入另一个html&#xff1f; 前端&#xff1a;一张图快速记忆CSS所有属性 前端&#xff1a;三个CSS预处理器(框架)-Sass、LESS 和 Stylus的比较 前端&#xff1a;基于Java角度理解nodejs/np…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...