基于卷积神经网络的蔬菜识别系统,resnet50,mobilenet模型【pytorch框架+python源码】
更多目标检测和图像分类识别项目可看我主页其他文章
功能演示:
基于卷积神经网络的蔬菜识别系统,resnet50,mobilenet【pytorch框架,python,tkinter】_哔哩哔哩_bilibili
(一)简介
基于卷积神经网络的蔬菜识别系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标图表等。
该项目有两个可选模型:resnet50和mobilenet,两个模型都在项目中;GUI界面由tkinter设计和实现。此项目可在windowns、linux(ubuntu, centos)、mac系统下运行。
该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:
windows保姆级的pycharm+anaconda搭建python虚拟环境_windows启动python虚拟环境-CSDN博客
在Linux系统(Ubuntn, Centos)用pycharm+anaconda搭建python虚拟环境_linux pycharm-CSDN博客
(二)项目介绍
1. 项目结构
该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单
以训练resnet50模型为例:
第一步:修改model_resnet50.py的数据集路径,模型名称、模型训练的轮数
第二步:模型训练和验证,即直接运行model_resnet50.py文件
第三步:使用模型,即运行gui_chinese.py文件即可通过GUI界面来展示模型效果
2. 数据结构
部分数据展示:
3.GUI界面(技术栈:tkinter+python)
4.模型训练和验证的一些指标及效果
1)模型训练和验证的准确率曲线,损失曲线
2)热力图
3)准确率、精确率、召回率、F1值
4)模型训练和验证记录
(三)代码
由于篇幅有限,只展示核心代码
def main(self, epochs):# 记录训练过程log_file_name = './results/resnet50训练和验证过程.txt'# 记录正常的 print 信息sys.stdout = Logger(log_file_name)print("using {} device.".format(self.device))# 开始训练,记录开始时间begin_time = time()# 加载数据train_loader, validate_loader, class_names, train_num, val_num = self.data_load()print("class_names: ", class_names)train_steps = len(train_loader)val_steps = len(validate_loader)# 加载模型model = self.model_load() # 创建模型# 修改全连接层的输出维度in_channel = model.fc.in_featuresmodel.fc = nn.Linear(in_channel, len(class_names))# 模型结构可视化x = torch.randn(16, 3, 224, 224) # 随机生成一个输入# 模型结构保存路径model_visual_path = 'results/resnet50_visual.onnx'# 将 pytorch 模型以 onnx 格式导出并保存torch.onnx.export(model, x, model_visual_path) # netron.start(model_visual_path) # 浏览器会自动打开网络结构# 将模型放入GPU中model.to(self.device)# 定义损失函数loss_function = nn.CrossEntropyLoss()# 定义优化器params = [p for p in model.parameters() if p.requires_grad]optimizer = optim.Adam(params=params, lr=0.0001)train_loss_history, train_acc_history = [], []test_loss_history, test_acc_history = [], []best_acc = 0.0for epoch in range(0, epochs):# 下面是模型训练model.train()running_loss = 0.0train_acc = 0.0train_bar = tqdm(train_loader, file=sys.stdout)# 进来一个batch的数据,计算一次梯度,更新一次网络for step, data in enumerate(train_bar):# 获取图像及对应的真实标签images, labels = data# 清空过往梯度optimizer.zero_grad()# 得到预测的标签outputs = model(images.to(self.device))# 计算损失train_loss = loss_function(outputs, labels.to(self.device))# 反向传播,计算当前梯度train_loss.backward()# 根据梯度更新网络参数optimizer.step() # 累加损失running_loss += train_loss.item()# 每行最大值的索引predict_y = torch.max(outputs, dim=1)[1] # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回Falsetrain_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()# 更新进度条train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,epochs,train_loss)# 下面是模型验证# 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化model.eval()# accumulate accurate number / epochval_acc = 0.0 testing_loss = 0.0# 张量的计算过程中无需计算梯度with torch.no_grad(): val_bar = tqdm(validate_loader, file=sys.stdout)for val_data in val_bar:# 获取图像及对应的真实标签val_images, val_labels = val_data# 得到预测的标签outputs = model(val_images.to(self.device))# 计算损失val_loss = loss_function(outputs, val_labels.to(self.device)) testing_loss += val_loss.item()# 每行最大值的索引predict_y = torch.max(outputs, dim=1)[1] # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回Falseval_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()train_loss = running_loss / train_stepstrain_accurate = train_acc / train_numtest_loss = testing_loss / val_stepsval_accurate = val_acc / val_numtrain_loss_history.append(train_loss)train_acc_history.append(train_accurate)test_loss_history.append(test_loss)test_acc_history.append(val_accurate)print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %(epoch + 1, train_loss, val_accurate))# 保存最佳模型if val_accurate > best_acc:best_acc = val_accuratetorch.save(model.state_dict(), self.model_name)# 记录结束时间end_time = time()run_time = end_time - begin_timeprint('该循环程序运行时间:', run_time, "s")# 绘制模型训练过程图self.show_loss_acc(train_loss_history, train_acc_history,test_loss_history, test_acc_history)# 画热力图test_real_labels, test_pre_labels = self.heatmaps(model, validate_loader, class_names)# 计算混淆矩阵self.calculate_confusion_matrix(test_real_labels, test_pre_labels, class_names)
(四)总结
以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。
项目运行过程如出现问题,请及时交流!
相关文章:

基于卷积神经网络的蔬菜识别系统,resnet50,mobilenet模型【pytorch框架+python源码】
更多目标检测和图像分类识别项目可看我主页其他文章 功能演示: 基于卷积神经网络的蔬菜识别系统,resnet50,mobilenet【pytorch框架,python,tkinter】_哔哩哔哩_bilibili (一)简介 基于卷积神…...

数据结构与算法:栈与队列的高级应用
目录 3.1 栈的高级用法 3.2 队列的深度应用 3.3 栈与队列的综合应用 总结 数据结构与算法:栈与队列的高级应用 栈和队列是两种重要的线性数据结构,它们在计算机科学和工程的许多领域都有广泛的应用。从函数调用到表达式求值,再到任务调度…...

macos php开发环境之macport安装的php扩展安装,php常用扩展安装,port中可用的所有php扩展列表
macos中,我们使用了port 安装了php后,默认只带有php基本的核心扩展的, 如果需要使用其他的扩展,如 redis, https, xdebug等扩展就需要我们手动来安装对应的扩展。 macos php开发环境 macport安装的php的方法见macos 中…...

使用Pytorch+Numpy+Matplotlib实现手写字体分类和图像显示
文章目录 1.引用2.内置图片数据集加载3.处理为batch类型4.设置运行设备5.查看数据6.绘图查看数据图片(1)不显示图片标签(2)打印图片标签(3)图片显示标签 7.定义卷积函数8.卷积实例化、损失函数、优化器9.训练和测试损失、正确率(1)训练(2)测试(3)循环(4)损失和正确率曲线(5)输出…...

kimi帮我解决ubuntu下软链接文件夹权限不够的问题
我的操作如下 ubuntuubuntu-QiTianM420-N000:~$ ln -s /media/ubuntu/4701aea3-f883-40a9-b12f-61e832117414 code ubuntuubuntu-QiTianM420-N000:~$ ls -l 总用量 636 drwxrwxr-x 2 ubuntu ubuntu 4096 5月 7 17:16 bin drwxrwxrwx 2 ubuntu ubuntu 4096 5月 8 13…...

如何去除背景音乐保留人声?保留人声,消除杂音
在日常生活和工作中,我们经常遇到需要处理音频的情况,尤其是当我们想要去除背景音乐,仅保留人声时。这种需求在处理电影片段、制作音乐MV、或者提取演讲内容等场景中尤为常见。本文将为您详细介绍如何去除背景音乐并保留人声,帮助…...

2.4.ReactOS系统提升IRQL级别KfRaiseIrql 函数
2.4.ReactOS系统提升IRQL级别KfRaiseIrql 函数 2.4.ReactOS系统提升IRQL级别KfRaiseIrql 函数 文章目录 2.4.ReactOS系统提升IRQL级别KfRaiseIrql 函数KfRaiseIrql 函数 KfRaiseIrql 函数 /*********************************************************************** NAME …...

【新书】使用 OpenAI API 构建 AI 应用:利用 ChatGPT等构建 10 个 AI 项目(第二版),404页pdf
通过构建 ChatGPT 克隆、代码错误修复器、测验生成器、翻译应用、自动回复邮件生成器、PowerPoint 生成器等项目,提升您的应用开发技能。 关键特性 通过掌握 ChatGPT 概念(包括微调和集成),转变为 AI 开发专家 通过涵盖广泛 AI …...

修改PostgreSQL表中的字段排列顺序
二、通过修改系统表(pg_attribute)达到字段重新排序的目的有关系统表的概述及用途可以查看官网:http://www.pgsqldb.org/pgsqldoc-cvs/catalogs.html 表名字表用途pg_class表,索引,序列,视图(”关系”)pg_…...

canvas实现手写功能
1.从接口获取手写内容,处理成由单个字组成的数组(包括符号) 2.合成所有图的时候,会闪现outputCanvas合成的图,注意隐藏 3.可以进行多个手写内容切换 4.基于uniapp的 <template><view class"content&quo…...

Python知识点:基于Python技术,如何使用TensorFlow进行目标检测
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候! 使用TensorFlow进行目标检测的完整指南 目标检测是计算机视觉领域中的一项重要任…...

初始爬虫13(js逆向)
为了解决网页端的动态加载,加密设置等,所以需要js逆向操作。 JavaScript逆向可以分为三大部分:寻找入口,调试分析和模拟执行。 1.chrome在爬虫中的作用 1.1preserve log的使用 默认情况下,页面发生跳转之后…...

前端发送了请求头的参数,经debug发现后端请求对象请求头中没有该参数
debug测试,发现前端发来请求头中确实没有找到添加的请求头参数,但是 Network 中却显示请求头中有该参数信息。 原因是RequestHeaders中设置的请求参数含有下划线,NGINX将静默地丢弃带有下划线的HTTP标头,这样做是为了防止在将头映…...

雷池社区版如何使用静态资源的方式建立站点
介绍: SafeLine,中文名 “雷池”,是一款简单好用, 效果突出的 Web 应用防火墙(WAF),可以保护 Web 服务不受黑客攻击。 雷池通过过滤和监控 Web 应用与互联网之间的 HTTP 流量来保护 Web 服务。可以保护 Web 服务免受 SQL 注入、X…...

车载电源OBC+DC/DC
文章目录 1. 车载DC/DC应用场景2. PFC2.1 简介2.2 专业名词2.3 常见拓扑结构2.3.1 传统桥式PFC2.3.2 普通无桥型PFC2.3.3 双Boost无桥PFC2.3.4 图腾柱PFC2.3.5 参考资料 2.4 功率因数2.4.1 简介2.4.2 计算 3. DC/DC3.1 Boost升压电路3.1.1 简介3.1.2 电路框图3.1.3 工作原理3.1…...

【朝花夕拾】免费个人网页搭建:免费托管、CDN加速、个人域名、现代化网页模板一网打尽
现代化网页设计的免费宝藏:GitHub PagesCodePenCloudflareUS.KG 前言 在当今数字化时代,个人和企业越来越重视在线形象的建立。GitHub Pages 提供了一个免费且便捷的平台,允许用户托管静态网站。然而,GitHub Pages 默认的域名可…...

Spring Boot知识管理系统:用户体验设计
6系统测试 6.1概念和意义 测试的定义:程序测试是为了发现错误而执行程序的过程。测试(Testing)的任务与目的可以描述为: 目的:发现程序的错误; 任务:通过在计算机上执行程序,暴露程序中潜在的错误。 另一个…...
《数字信号处理》学习08-围线积分法(留数法)计算z 逆变换
目录 一,z逆变换相关概念 二,留数定理相关概念 三,习题 一,z逆变换相关概念 接下来开始学习z变换的反变换-z逆变换(z反变化)。 由象函数 求它的原序列 的过程就称为 逆变换。即 。 求z逆变换…...

vue3中的computed属性
模板界面: <template><div class"person"><h2>姓: <input type"text" v-model"person.firstName" /></h2><h2>名: <input type"text" v-model"person…...

C++学习笔记之vector容器
天上月,人间月,负笈求学肩上月,登高凭栏眼中月,竹篮打水碎又圆。 山间风,水边风,御剑远游脚下风,圣贤书斋翻书风,风吹浮萍又相逢。 STL(Standard Template Library,标准模板库 ) 从…...

LeNet-5(论文复现)
LeNet-5(论文复现) 本文所涉及所有资源均在传知代码平台可获取 文章目录 LeNet-5(论文复现)概述LeNet-5网络架构介绍训练过程测试过程使用方式说明 概述 LeNet是最早的卷积神经网络之一。1998年,Yann LeCun第一次将LeN…...

基于SpringBoot+Vue+Uniapp汽车保养系统小程序的设计与实现
详细视频演示 请联系我获取更详细的演示视频 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念,提供了一套默认的配置,让开发者可以更专注于业务逻辑而…...

【问题实战】Jmeter中jtl格式转换图片后如何分开展示各个性能指标?
【问题实战】Jmeter中jtl格式转换图片后如何分开展示各个性能指标? 遇到的问题解决方法查看修改效果 遇到的问题 JMeter测试计划中只设置了一个性能监控器jpgc - PerfMon Metrics Collector;在这个监控器中设置几个性能监控指标,比如CPU、Di…...

解决 MySQL 连接数过多导致的 SQLNonTransientConnectionException 问题
这里写目录标题 解决 MySQL 连接数过多导致的 SQLNonTransientConnectionException 问题1. 概述2. 问题描述异常日志的关键部分: 3. 原因分析3.1. MySQL 连接数配置3.2. 连接池配置问题3.3. 代码中未正确关闭连接3.4. 高并发导致连接需求激增 4. 解决方案4.1. 增加 …...

猫头虎分享:什么是 ChatGPT 4o Canvas?
猫头虎是谁? 大家好,我是 猫头虎,猫头虎技术团队创始人,也被大家称为猫哥。我目前是COC北京城市开发者社区主理人、COC西安城市开发者社区主理人,以及云原生开发者社区主理人,在多个技术领域如云原生、前端…...

qiankun 主项目和子项目都是 vue2,部署在同一台服务器上,nginx 配置
1、主项目配置 1.1 micro.vue 组件 <template><div id"container-sub-app"></div> </template><script> import { loadMicroApp } from qiankun; import actions from /utils/actions.js;export default {name: microApp,mixins: [ac…...

深入浅出MongoDB(七)
深入浅出MongoDB(七) 文章目录 深入浅出MongoDB(七)查询优化创建索引以支持读取操作查询选择性覆盖查询 分析性能使用数据库分析器评估对数据库的操作使用db.currentOp()评估mongod操作使用explain评估查询性能 优化查询性能创建索…...

【华为】配置NAT访问互联网
1.AR1: int g0/0/0 ip ad 64.1.1.2 255.255.255.0 int g0/0/1 ip ad 110.242.68.1 255.255.255.02.AR2: (1)配置端口ip: int g0/0/1 ip ad 10.3.1.2 255.255.255.0 int g0/0/0 ip ad 64.1.1.1 255.255.255.0(2)配置默认路由: ip route-static 0.0.0.0 0.…...

Spring Boot项目使用多线程执行定时任务
我在一个Spring Boot项目中,采用定时器执行一些操作,比如10秒就发送一次数据。这些操作有2个,如下所示。我就想,虽然这两个操作各自指定了时间频率,但如果其中一个操作非常耗时,会不会影响其他操作呢&#…...

【安装JDK和Android SDK】
安装JDK和Android SDK 1 前言2 下载2.1 下载途径2.2 JDK下载和安装2.2.1 下载2.2.2 安装并配置环境变量2.2.3 验证 2.3 SDK下载和安装2.3.1 下载2.3.2 安装2.3.3 环境变量配置2.3.4 验证 1 前言 在软件开发中,Android应用开发通常使用Android Studio,但…...