数学建模算法与应用 第10章 多元分析及其方法
目录
10.1 因子分析
Matlab代码示例:因子分析
10.2 主成分分析
Matlab代码示例:主成分分析
10.3 典型相关分析
Matlab代码示例:典型相关分析
10.4 判别分析
Matlab代码示例:线性判别分析
10.5 对应分析
Matlab代码示例:对应分析
10.6 多维尺度法
Matlab代码示例:多维尺度分析
习题 10
总结
多元分析是用于分析和解释多个变量之间关系的一组统计技术。在许多实际应用中,如市场营销、医学研究和社会科学中,变量往往不是独立的,多个变量之间可能存在复杂的相互作用。多元分析方法通过统计建模,揭示数据中隐藏的结构和规律。本章将介绍多元分析的基本概念,常用的方法包括因子分析、主成分分析、典型相关分析等,以及它们在Matlab中的应用。
10.1 因子分析
因子分析是一种数据降维技术,用于寻找观测变量背后潜在的、不可直接观测的因子。通过将多个高度相关的变量归结为少量公共因子,因子分析可以有效简化数据的复杂性。
-
因子载荷矩阵:因子分析的结果之一,表示每个观测变量与潜在因子的关系强度。
-
旋转方法:因子分析常使用旋转(如正交旋转、斜交旋转)来使因子更具解释性。
Matlab代码示例:因子分析
% 生成随机数据矩阵
rng(0);
X = randn(100, 5);% 使用factoran进行因子分析,提取两个因子
[Loadings, Psi] = factoran(X, 2);% 输出因子载荷矩阵
disp('因子载荷矩阵:');
disp(Loadings);
在上述代码中,我们使用factoran
函数对数据进行了因子分析,并提取了两个因子,输出因子载荷矩阵。
10.2 主成分分析
主成分分析(PCA)是一种最常用的数据降维方法,通过找到一组互相正交的主成分来解释数据中的主要变化。PCA可以用于简化数据、消除多重共线性、可视化高维数据。
-
特征值分解:PCA通过对数据协方差矩阵进行特征值分解来获得主成分。
-
方差解释率:每个主成分解释的方差占总体方差的比例,可以用于选择适当数量的主成分。
Matlab代码示例:主成分分析
% 生成随机数据矩阵
X = randn(100, 5);% 使用pca函数进行主成分分析
[coeff, score, latent, tsquared, explained] = pca(X);% 输出前两主成分的方差解释率
disp('前两主成分的方差解释率:');
disp(explained(1:2));
在上述代码中,使用pca
函数对数据进行了主成分分析,并输出了前两个主成分的方差解释率。
10.3 典型相关分析
典型相关分析(CCA)是一种用于分析两组变量之间相关性的多元统计方法。它寻找线性组合,使得两组变量之间的相关性最大化。
-
典型变量:在CCA中,两组变量各自的线性组合被称为典型变量。
-
典型相关系数:表示两个典型变量之间的相关性,用于衡量两组变量之间的关联强度。
Matlab代码示例:典型相关分析
% 生成两组随机数据矩阵
X = randn(100, 3);
Y = randn(100, 2);% 使用canoncorr进行典型相关分析
[A, B, r] = canoncorr(X, Y);% 输出典型相关系数
disp('典型相关系数:');
disp(r);
在上述代码中,我们使用canoncorr
函数对两组数据进行了典型相关分析,并输出了典型相关系数。
10.4 判别分析
判别分析是一种用于分类的统计方法,用于根据已有数据构建分类模型,并对新观测值进行分类预测。常见的判别分析方法包括线性判别分析(LDA)和二次判别分析(QDA)。
Matlab代码示例:线性判别分析
% 生成随机数据
group1 = mvnrnd([2 2], eye(2), 50);
group2 = mvnrnd([-2 -2], eye(2), 50);
X = [group1; group2];
Y = [ones(50, 1); 2 * ones(50, 1)];% 使用fitcdiscr进行线性判别分析
LDAmodel = fitcdiscr(X, Y);% 绘制判别边界
figure;
gscatter(X(:,1), X(:,2), Y);
K = LDAmodel.Coeffs(1,2).Const;
L = LDAmodel.Coeffs(1,2).Linear;
f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
hold on;
fimplicit(f, [-5 5 -5 5]);
xlabel('特征1');
ylabel('特征2');
title('线性判别分析边界');
hold off;
在该代码中,我们使用了fitcdiscr
函数对两组数据进行了线性判别分析,并绘制了分类边界。
10.5 对应分析
对应分析是一种用于分析分类数据之间关系的统计方法,通常用于处理列联表(contingency table),帮助理解变量之间的关联结构。
Matlab代码示例:对应分析
% 定义列联表
observed = [30 10 5; 15 25 20; 5 20 35];% 使用matlab中的corresp函数进行对应分析
[Dim, score] = corresp(observed, 2);% 输出对应分析得分
disp('对应分析得分:');
disp(score);
上述代码中,我们定义了一个列联表,并使用corresp
函数进行了对应分析,输出了各变量的得分。
10.6 多维尺度法
多维尺度法(MDS)是一种用于可视化高维数据的降维技术,它通过将数据嵌入到低维空间中来保留原数据中的距离信息,使得可以在二维或三维空间中进行可视化。
Matlab代码示例:多维尺度分析
% 生成距离矩阵
D = pdist(rand(10, 3));
D_square = squareform(D);% 使用mdscale进行多维尺度分析
Y = mdscale(D_square, 2);% 绘制二维可视化结果
figure;
scatter(Y(:,1), Y(:,2), 'filled');
xlabel('维度1');
ylabel('维度2');
title('多维尺度分析结果');
该代码展示了如何使用mdscale
函数对距离矩阵进行多维尺度分析,并将结果在二维空间中进行可视化。
习题 10
在第十章结束后,提供了一些相关的习题,帮助读者深入理解多元分析方法。习题10包括:
-
因子分析:对给定的数据集进行因子分析,提取主要因子并解释其含义。
-
主成分分析:使用PCA对高维数据进行降维处理,并绘制前两个主成分的解释方差。
-
典型相关分析:对两组变量进行典型相关分析,解释典型相关系数的意义。
-
判别分析:使用线性判别分析对分类数据进行分类预测,并绘制判别边界。
-
多维尺度法:对一组距离矩阵进行多维尺度分析,将高维数据嵌入到二维空间中进行可视化。
通过这些习题,读者可以进一步掌握多元分析在实际中的应用,以及如何利用Matlab工具进行多元分析的建模和数据可视化。
总结
第十章介绍了多元分析的基本概念及其常用方法,包括因子分析、主成分分析、典型相关分析、判别分析和多维尺度法等。多元分析在数据挖掘和模式识别中有着重要作用,通过对多个变量之间的关系进行建模,可以帮助我们揭示数据中潜在的结构和规律。通过本章的学习,读者可以掌握多元分析的基本原理和方法,并利用Matlab进行多元数据的分析与建模。
相关文章:

数学建模算法与应用 第10章 多元分析及其方法
目录 10.1 因子分析 Matlab代码示例:因子分析 10.2 主成分分析 Matlab代码示例:主成分分析 10.3 典型相关分析 Matlab代码示例:典型相关分析 10.4 判别分析 Matlab代码示例:线性判别分析 10.5 对应分析 Matlab代码示例&a…...

西门子828d的plc一些信息记录
1、虽然是200的plc但是引入了DB的形式替代原来的V存储区。 2、用户自定义DB块范围,DB9000-DB9063,共64个DB块。 可用地址范围如上图 机床MCP483面板地址表,其它类型的面板地址自己在828d简明调试手册里查看。 如何上载828d的plc程序: 1.通…...

为啥我的Python这么慢 - 项查找 (二)
上一篇为啥我的Python这么慢, 字符串的加和和join被陈群主分享到biopython-生信QQ群时,乐平指出字典的写法存在问题,并给了一篇知乎的链接https://zhuanlan.zhihu.com/p/28738634指导如何高效字典操作。 根据那篇文章改了两处写法,如下 (存储…...

计算机毕业设计python+spark知识图谱课程推荐系统 课程预测系统 课程大数据 课程数据分析 课程大屏 mooc慕课推荐系统 大数据毕业设计
指导教师意见: 1.对“文献综述”的评语: 对教育领域数据可视化的相关背景和现状做了综述,明确了课题的研究目标和研究重点,并对研究手段进行了概述。为后面的毕业设计做好了准备。 对本课题的深度、广度及工作量的…...

阿里 C++面试,算法题没做出来,,,
我本人是非科班学 C 后端和嵌入式的。在我面试的过程中,竟然得到了阿里 C 研发工程师的面试机会。因为,阿里主要是用 Java 比较多,C 的岗位比较少,所以感觉这个机会还是挺难得的。 阿里 C 研发工程师面试考了我一道类似于快速…...

【自动驾驶汽车通讯协议】GMSL通信技术以及加串器(Serializer)解串器(Deserializer)介绍
文章目录 0. 前言1. GMSL技术概述2. 为什么需要SerDes?3. GMSL技术特点4.自动驾驶汽车中的应用5. 结论 0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准…...

Uiautomator2与weditor配置一直报错咋办
作者在配置这两个的时候绞尽脑汁了,u2的init总是报错并且无法自动在手机上安装atx,weditor可以打开但是只要对元素操作或者任意操作就会让你去重新init,搞得作者焦头烂额,而且网上各种各样的报错信息眼花缭乱,作者几乎…...

Java后端面试题:MySQL篇
目录 MySQL基础部分 1. SELECT语句完整的执行顺序是什么? 2. 说一说内连接和外连接。 3. 请说说数据库三大范式。 4. 请你说说视图的作用,视图可以更改么? 架构 5. 请你说一说MySQL架构。 6. 请你说说一条SQL语句的执行过程ÿ…...

# Excel 操作大全
Excel 操作大全 文章目录 Excel 操作大全单元格文本换行计算SUM 单元格 文本换行 设置自动换行,在文本前面使用 AltEnter键即可换行文本前面可以输入空格实现段前缩进的效果 计算SUM 求和函数...

javascript中快速获取最大值和最小值
在 ES6 中,你可以使用 Math.max 和 Math.min 函数来获取一组数字中的最大值和最小值。这两个函数都接受一个可变数量的参数,并返回这些参数中的最大值或最小值。 以下是一个示例: const numbers [1, 2, 3, 4, 5];const max Math.max(...n…...

git merge啥意思
git merge 是 Git 中的一个命令,用于将一个分支的更改合并到另一个分支中。当你在一个项目中有多个开发人员同时工作,或者你在不同的特性分支上开发新功能时,git merge 命令就非常有用。它可以帮助你将不同分支上的更改整合在一起。 git mer…...

Web编程---Servlet技术
文章目录 一、目的二、原理三、过程1. TestServlet02文件演示效果2. TestServlet03文件演示效果3. TestServlet04与TestServlet05文件演示效果4. 控制台展示生命周期过程 四、代码web.xml文件TestServlet02.java文件TestServlet03.java文件TestServlet04.java文件TestServlet05…...

【cocos creator】输入框滑动条联动小组建
滑动条滑动输入框内容会改变 输入框输入,滑动条位置改变 const { ccclass, property } cc._decorator;ccclass() export default class SliderEnter extends cc.Component {property({ type: cc.Float, displayName: "最大值", tooltip: "" }…...

Flink时间窗口程序骨架结构
前言 Flink 作业的基本骨架结构包含三部分:创建执行环境、定义数据处理逻辑、提交并执行Flink作业。 日常大部分 Flink 作业是基于时间窗口计算模型的,同样的,开发一个Flink时间窗口作业也有一套基本的骨架结构,了解这套结构有助…...

计算机视觉之可做什么
1、计算机视觉的应用 计算机视觉在我们生活中已经有了很广泛的应用,在我们可见、不可见;可感知、不可感知的地方,深深地影响了我们的生活、生产方式。 日常生活:美颜相机、火车站刷脸进站、线上办理业务的身份认证、自动驾驶等等…...

观察者模式的思考
观察者模式由来 观察者模式(Observer Pattern)是一种行为型设计模式,它的起源可以追溯到20世纪90年代初,由设计模式四人帮(Erich Gamma, Richard Helm, Ralph Johnson 和 John Vlissides)在其著作《设计模…...

ORACLE SELECT INTO 赋值为空,抛出 NO DATA FOUND 异常
例子: DECLARE ORDER_NUM VARCHAR2(20); BEGIN SELECT S.ORDER_NUM INTO ORDER_NUM FROM SALES_ORDER S WHERE S.ID122344; DBMS_OUTPUT.PUT_LINE(单号: || ORDER_NUM); END; 在查询结果为空的情况下,以上代码会报错:未找到任何数据 解决方…...

GPT提示词
参考 提示词大全: GPT提示词大全(中英文双语)持续更新 提示词.com...

Redis协议详解及其异步应用
目录 一、Redis Pipeline(管道)概述优点使用场景工作原理Pipeline 的基本操作步骤C 示例(使用 [hiredis](https://github.com/redis/hiredis) 库) 二、Redis 事务概述事务的前提事务特征(ACID 分析)WATCH 命…...

LeetCode213:打家劫舍II
题目链接:213. 打家劫舍 II - 力扣(LeetCode) 代码如下 class Solution { public:int rob(vector<int>& nums) {if(nums.size() 0) return 0;if(nums.size() 1) return nums[0];if(nums.size() 2) return max(nums[0…...

linux一二三章那些是重点呢
第一章 静态库动态库的区别 什么是库 库文件是计算机上的一类文件,可以简单的把库文件看成一种代码仓库,它提供给使用者一些可以直接 拿来用的变量、函数或类。 如何制作 静态动态库 静态库: GCC 进行链接时,会把静态库中代码打…...

C语言中的程序入口:超越main函数的探索
在C语言中,尽管main函数是标准程序的默认入口点,但借助编译器特性和链接器选项,我们可以指定其他函数作为程序的入口。GCC编译器通过-e选项,允许我们将任何符合签名的函数作为程序的入口。这一特性可以用于特定的实验需求、特定系…...

《面试之MQ篇》
《面试之MQ篇》 1. 为什么要使用MQ 首先,面试官问的第一个问题或者说是逼问的一个问题:“为什么要使用MQ”其实面试官问这个问题就是想考察你MQ的特性,这个时候呢,我们必须要答出三点:解耦、异步、削峰。 1. 解耦 1. 传统系统…...

Git 分支操作-开发规范
一、背景 在实际开发中,一般在主分支的基础上单独创建一个新的分支进行开发,最后合并到master分支,而不是直接在master分支进行开发。 二、新建分支 1、初始状态,local为本地分支,remote为远程分支 2、单击 “Remot…...

JSONArray根据指定字段去重
JSONArray dataList new JSONArray();这儿省略dataList 加数据的过程 dataList new JSONArray(dataList.stream().distinct().collect(Collectors.toList())); Set<String> timestamps new HashSet<>();根据时间字段去重 dataList dataList.stream().map(obj -…...

线程有哪几种状态? 分别说明从一种状态到另一种状态转变有哪些方式?
在 Java 中,线程的生命周期管理通过不同的状态来跟踪。一个线程在其生命周期中可以处于多种状态,不同的状态之间会通过特定的事件发生转变。以下是 Java 线程的几种状态及其之间的转移方式: 1. 线程的状态 1.1 NEW(新建状态&…...

自注意力机制self-attention中的KV 缓存
在自注意力机制中,KV 缓存(Key-Value Caching)主要用于加速模型在推理阶段的计算,尤其是在处理长序列或者生成任务(如文本生成)时,这种缓存机制可以显著提高效率。 1. KV 缓存的背景 在 Trans…...

前端库--nanoid(轻量级的uuid)
文章目录 定义:生成方式:现实使用:NanoID 只有 108 个字节那么大NanoID更安全NanoID它既快速又紧凑 使用步骤1.安装nanoid包2.引入使用3.使用4.自定义字母 定义: UUID 是 通用唯一识别码(Universally Unique Identifierÿ…...

计算机基础-什么是网络端口?
网络端口可以想象成一个大型公寓楼的邮箱。每个公寓楼(这里指的是一个计算机或服务器)有很多个邮箱(即网络端口),每个邮箱都有一个独一无二的编号(端口号)。当一封信(网络数据包&…...

力扣动态规划基础版(斐波那契类型)
70. 爬楼梯https://leetcode.cn/problems/climbing-stairs/ 70.爬楼梯 方法一 动态规划 考虑转移方程和边界条件: f(x) f(x -1) f(x - 2);f(1) 1;f&…...